精英家教网 > 高中数学 > 题目详情
14.在函数:①y=cos|x|②y=|sinx|③$y=cos(2x+\frac{π}{6})$④$y=tan(2x-\frac{π}{4})$中,最小正周期为π的所有函数为(  )
A.①②③④B.①②③C.②③D.③④

分析 根据三角函数的图象与性质,分别求出四个函数的最小正周期即可.

解答 解:对于①,函数y=cos|x|的最小正周期为2π,不满足题意;
对于②,函数y=|sinx|的最小正周期为π,满足题意;
对于③,函数$y=cos(2x+\frac{π}{6})$的最小正周期为T=$\frac{2π}{2}$=π,满足题意;
对于④,函数$y=tan(2x-\frac{π}{4})$的最小正周期为T=$\frac{π}{2}$,不满足题意;
综上,最小正周期为π的函数是②③.
故选:C.

点评 本题考查了求三角函数的最小正周期的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知f(x)是定义在R上的函数,f′(x)是其导函数,若满足f′(-x)=f′(x),f(x+2)=-f(x),则函数y=f(x)的图象可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图是某年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字09中的一个).去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有(  )
A.a1>a2B.a1<a2
C.a1=a2D.a1,a2的大小与m的值有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=|lnx|,a>b>0,f(a)=f(b),则$\frac{{{a^2}+{b^2}}}{a-b}$的最小值等于2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列说法中正确的是(  )
A.第一象限角一定是正角B.终边与始边均相同的角一定相等
C.-834°是第四象限角D.钝角一定是第二象限角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某小区现有住房的面积为a平方米,在改造过程中政府决定每年拆除b平方米旧住房,同时按当店住房面积的10%建设新住房,则n年后该小区的住房面积为(  )
A.a•1.1n-nbB.a•1.1n-10b(1.1n-1)
C.n(1.1a-1)D.(a-b)1.1n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C经过点A(0,2)和点B(2,-2),且圆心C在直线x-y+1=0上.
(Ⅰ)求圆C的标准式方程
(Ⅱ)若有斜率的直线m经过点(1,4),且被圆C截得的弦长为6,求直线m的斜截式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知点M是圆C:(x+1)2+y2=1上的动点,定点D(1,0),点P在直线DM上,点N在直线CM上,且满足$\overrightarrow{DM}=2\overrightarrow{DP}$,$\overrightarrow{NP}•\overrightarrow{DM}=0$,动点N的轨迹是曲线E.
(1)求曲线E的方程;
(2)若AB是曲线E的长为2的动弦,O为坐标原点,求△AOB的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在同一平面直角坐标系中,经过伸缩变换$\left\{\begin{array}{l}{x′=5x}\\{y′=3y}\end{array}\right.$后,曲线C变为曲线x′2+4y′2=1,则曲线C的方程为(  )
A.25x2+36y2=1B.9x2+100y2=1C.10x+24y=1D.$\frac{2}{25}$x2+$\frac{8}{9}$y2=1

查看答案和解析>>

同步练习册答案