精英家教网 > 高中数学 > 题目详情
1.极坐标系中,圆ρ=2cosθ与直线2ρcos(θ+$\frac{π}{3}$)=-1的位置关系为(  )
A.相离B.相切C.相交D.无法确定

分析 把极坐标方程化为直角坐标方程,求出圆心到直线的距离,再与半径比较大小即可得出.

解答 解:圆ρ=2cosθ即ρ2=2ρcosθ,化为x2+y2=2x,配方为(x-1)2+y2=1,∴圆心C(1,0),半径r=1.
直线2ρcos(θ+$\frac{π}{3}$)=-1展开为$2(\frac{1}{2}ρcosθ-\frac{\sqrt{3}}{2}ρsinθ)$=-1,化为x-$\sqrt{3}$y+1=0.
∴圆心C到直线的距离d=$\frac{|1-0+1|}{\sqrt{{1}^{2}+(-\sqrt{3})^{2}}}$=1=r.
∴直线与圆相切.
故选:B.

点评 本题考查了把极坐标方程化为直角坐标方程的方法、点到直线的距离公式、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,观察发现S′=l;三维空间中球的二维测度(表面积)S=4πr2,三维测度(体积)V=$\frac{4}{3}$πr3,观察发现V′=S.则由四维空间中“超球”的三维测度V=8πr3,猜想其四维测度W=(  )
A.4πr4B.4πr2C.2πr4D.πr4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合{(x,y)|x∈[0,3],y∈[-1,1]}
(1)若x,y∈z,则3x+2y-1≥0概率为多少?
(2)若x,y∈R,则3x+2y-1≥0概率为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax3-bx2+9x+2,若x=$\frac{1}{2}$是f(x)的一个极值点,且f(x)的图象在x=1处的切线与直线3x+y-1=0平行.
(1)求f(x)的解析式及单调区间
(2)若对任意的x∈[$\frac{1}{4}$,2]都有f(x)≥t2-2t-1成立,求函数g(t)=t2+t-2的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若a>b≥2,给定下列不等式①$\frac{1}{a}$<$\frac{1}{b}$;②a+b>2$\sqrt{ab}$;③ab>a+b;④loga3>logb3,其中正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合M={x||x|≤3},N={x|y=log2(-x2+3x-2)},则M∩N=(  )
A.{x|1<x≤3}B.{x|1<x<2}C.{x|-3≤x<2}D.{x|-3≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.无穷数列{an}的前n项和Sn=npan(n∈N*),并且a1≠a2.S10=45
(1)求p的值;          
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z满足(z-1)i=-1,则z=(  )
A.1+iB.-1+iC.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知A船在灯塔C的正东方向,且A船到灯塔C的距离为2km,B船在灯塔C北偏西30°处,A,B两船间的距离为3km,则B船到灯塔C的距离为$\sqrt{6}$-1km.

查看答案和解析>>

同步练习册答案