精英家教网 > 高中数学 > 题目详情
11.函数f(x)=$\frac{ax+b}{x^2+c}$的图象如图所示,则下列结论成立的是(  )
A.a>0,c>0B.a>0,c<0C.a<0,c>0D.a<0,c<0

分析 根据f(0)=0判断b=0,根据定义域判断c,根据函数值域判断a.

解答 解:∵f(x)图象过原点,
∴f(0)=0,即$\frac{b}{c}$=0,∴b=0.
∵f(x)的定义域为R,∴c>0.
∵当x>0时,f(x)>0,当x<0时,f(x)<0,
∴a>0,
故选A.

点评 本题考查了函数图象的判断,通常从定义域,值域,特殊点等方面来判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知f(x)=ex,g(x)=1nx.
(I)分别求函数y=f(x)与y=g(x)图象与坐标轴交点处的切线方程;
(Ⅱ)设h(x)=f(x)-g(x),若函数h(x)在x=x0处取得极小值,求证:x0∈($\frac{1}{2}$,1),且h(x0)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2-(a+1)x+1.
(1)解不等式f(x)≥0;
(2)若f(x)在[1,+∞)单调递增,求实数a的取值范围;
(3)若不等式f(x)≥0在x∈(1,2]上恒成立,求正实数a的取值范围;
(4)若不等式f(x)≥0在a∈[1,2]上恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f($\sqrt{x}$)=$\sqrt{x}$+x(x≥0)的最小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的离心率为$\frac{\sqrt{3}}{2}$,P(m,n)为圆x2+y2=16上任意一点,过P作椭圆的切线PA,PB,设切点分别为A(x1,y1),B(x2,y2).
(1)证明:切线PA的方程为$\frac{{x}_{1}x}{4}$+y1y=1;
(2)设O为坐标原点,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,a=2,b=3,cosA=$\frac{2\sqrt{2}}{3}$,则sinB=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=2x+1,若f1(x)=f(x),fn+1(x)=f[fn(x)],n∈N*.则f5(x)的表达式为32x+31.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)解不等式:$\frac{x+2}{2-3x}$>1.
(2)已知a,b,c都大于零,求证:a2+b2+c2≥ab+bc+ac.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数f(x)=sinxcosx-1+sin2x的图象经过恰当平移后得到一个偶函数的图象,则这个平移可以是(  )
A.向左平移$\frac{π}{8}$个单位B.向左平移$\frac{π}{4}$个单位
C.向右平移$\frac{π}{8}$个单位D.向右平移$\frac{π}{4}$个单位

查看答案和解析>>

同步练习册答案