精英家教网 > 高中数学 > 题目详情
10.数列{an}是公差大于0的等差数列,a1=f(x+1),a2=0,a3=f(x-1),其中已知函数f(x)=x2-4x+2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=an+5,Sn为数列{bn}的前n项和,求$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$.

分析 (Ⅰ)由等差数列的性质可得a1+a3=2a2=0,代入化简可得x=1(3舍去),求得首项和公差,即可得到所求通项公式;
(Ⅱ)求得bn=an+5=2n+1,Sn=$\frac{1}{2}$n(2n+4)=n(n+2),$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),由数列的求和方法:裂项相消求和,化简整理即可得到所求和.

解答 解:(Ⅰ)数列{an}是公差d大于0的等差数列,a1=f(x+1),a2=0,a3=f(x-1),
其中已知函数f(x)=x2-4x+2即为f(x)=(x-2)2-2,
可得a1+a3=2a2=0,
即有(x-1)2-2+(x-3)2-2=0,
解得x=1或3,
由d>0,可得x=1(3舍去),
则a1=-2,a2=0,a3=2,
即有d=2,an=a1+(n-1)d=2n-4,n∈N*;
(Ⅱ)bn=an+5=2n+1,
Sn=$\frac{1}{2}$n(2n+4)=n(n+2),
$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
可得$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.

点评 本题考查等差数列的通项公式及求和公式和性质,考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在△ABC中,a=3,b=4,cosB=$\frac{3}{5}$,则sinC=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}的前n项和是Sn=(n+2)2+k,当k=-4时,{an}是公差d=2的等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知m,n为空间中两条不同的直线,α,β为空间中两个不同的平面,下列命题正确的是(  )
A.若n⊥α,n⊥β,m?β则m∥αB.若m⊥α,α⊥β,则m∥β
C.若m,n在γ内的射影互相平行,则m∥nD.若m⊥l,α∩β=l,则m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设点O为原点,点A,B的坐标分别为(a,0),(0,a),其中a是正的常数,点P在线段AB上,且$\overrightarrow{AP}$=t$\overrightarrow{AB}$(0≤t≤1),则$\overrightarrow{OA}$•$\overrightarrow{OP}$的最大值为a2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知⊙M:x2+y2=1,⊙N:x2+y2-6x+8y-11=0,则两圆的公切线的条数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线方程为y2=4x则焦点到准线的距离为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题p:“?x0∈R,x02-x0>0”,则¬p是(  )
A.?x0∈R,x02-x0<0B.?x0∈R,x02-x0≤0C.?x∈R,x2-x<0D.?x∈R,x2-x≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左焦点为F,第二象限的点M在双曲线C的渐近线上,且|OM|=a,若直线|MF|的斜率为$\frac{b}{a}$,则双曲线C的渐近线方程为(  )
A.y=±xB.y=±2xC.y=±3xD.y=±4x

查看答案和解析>>

同步练习册答案