精英家教网 > 高中数学 > 题目详情
4.设实数x、y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y-3≤0}\end{array}\right.$,则z=|x-4y+1|的最大值和最小值之和是(  )
A.2B.3C.9D.11

分析 由约束条件作出可行域,令t=x-4y+1,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得t的范围,求出其绝对值的范围,则答案可求.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y-3≤0}\end{array}\right.$作出可行域如图,
联立$\left\{\begin{array}{l}{x-y+1=0}\\{3x-y-3=0}\end{array}\right.$,解得B(2,3),
令t=x-4y+1,化为$y=\frac{x}{4}-\frac{t}{4}+\frac{1}{4}$,
由图可知,当直线$y=\frac{x}{4}-\frac{t}{4}+\frac{1}{4}$过A时,直线在y轴上的截距最小,t有最大值为2,
当直线过B时,直线在y轴上的截距最大,t有最小值为-9,
∴z=|x-4y+1|的最大值和最小值分别为9和0.
则z=|x-4y+1|的最大值和最小值的和为9.
故选:C.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设{an}是公比为q的等比数列,令bn=an+1(n=1,2,…),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则q=-$\frac{3}{2}$或-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,a,b,c分别为内角A,B,C的对边,3cosA-cos(B+C)=1,a=$\sqrt{15}$,B=$\frac{π}{4}$,则b等于(  )
A.$\sqrt{10}$B.3C.2$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合M={x|log2(x-1)>0},集合N={x|x≥-2},则N∩∁RM=(  )
A.{x|x≤-2}B.{x|-2<x≤2}C.{x|-2≤x≤3}D.{x|-2≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等腰三角形ABC中,∠A=150°,AB=AC=1,则$\overrightarrow{AB}•\overrightarrow{BC}$=(  )
A.$-\frac{{\sqrt{3}}}{2}-1$B.$-\frac{{\sqrt{3}}}{2}+1$C.$\frac{{\sqrt{3}}}{2}-1$D.$\frac{{\sqrt{3}}}{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,内角A,B,C所对的边分别为a,b,c,c=2,A≠B.
(I)求$\frac{asinA-bsinB}{sin(A-B)}$的值;
(2)若△ABC的面积为1,且tanC=2,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在四棱锥P-ABCD中,四条侧棱长均为2,底面ABCD为正方形,E为PC的中点.若异面直线PA与BE所成的角为45°,则四棱锥的体积是(  )
A.4B.2$\sqrt{3}$C.$\frac{4}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若sin(θ-$\frac{π}{3}$)=$\frac{1}{3}$,0<θ<π,则cosθ=(  )
A.$\frac{-\sqrt{3}+2\sqrt{2}}{6}$B.$\frac{\sqrt{3}+2\sqrt{2}}{6}$C.$\frac{-\sqrt{3}±2\sqrt{2}}{6}$D.$\frac{\sqrt{3}±2\sqrt{2}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2sin(ωx+φ-$\frac{π}{6}$)+1(0<φ<π,ω>0)为偶函数,且f(x)图象的两对称轴间的距离为$\frac{π}{3}$.
(1)求f($\frac{π}{6}$)的值;
(2)求函数f(x)的对称轴方程和对称中心;
(3)当x∈[-$\frac{π}{6}$,$\frac{π}{2}$]求函数f(x)的值域.

查看答案和解析>>

同步练习册答案