精英家教网 > 高中数学 > 题目详情
设函数f(x)的图象为一条开口向上的抛物线.已知x,y均为不等正数,p>0,q>0且p+q=1,求证:f(px+qy)<pf(x)+qf(y).
考点:二次函数的性质
专题:函数的性质及应用
分析:设出f(x)的解析式,利用基本不等式确定p,q和x,y不等式关系,代入函数的解析式化简整理.
解答: 证明:设f(x)=x2+ax+b
∵x,y均为不等正数,p>0,q>0,
∴pqx2+pqy2≥2pqxy,
∵x≠y,
∴pqx2+pqy2>2pqxy,
即p(1-p)x2+(1-q)qy2>2pqxy,
∴px2+qy2>p2x2+2pqxy+q2y2
∴(px2+qy2)+(pax+qay)+(pb+qb)>(px+qy)2+(pax+qay)+b,
∴p(x2+ax+b)+q(y2+ay+b)>(px+qy)2+a(px+qy)+b,
即f(px+qy)<pf(x)+qf(y).
点评:本题主要考查了二次函数的性质.考查了学生分析和推理的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图:
分组频数频率
[10,15)mP
[15,20)24n
[20,25)40.1
[25,30)20.05
合计M1
(Ⅰ)求出表中M,p及图中a的值;
(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an<0,
a
2
n
+(n-1)an-n=0,
(1)求{an}的通项公式;
(2)求数列{
an
2n
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)在一个周期上的一系列对应值如下表:
x-
π
4
0
π
6
π
4
π
2
4
y01
1
2
0-10
(Ⅰ)求f(x)的解析式;
(Ⅱ)在△ABC中,AC=2,BC=3,A为锐角,且f(A)=-
1
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出函数y=2 
1
x
的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),经过点(1,e),其中e为椭圆的离心率,F1、F2是椭圆的两焦点,M为椭圆短轴端点且△MF1F2为直角三角形.
(1)求椭圆C的方程;
(2)设不经过原点的直线l与椭圆C相交于A,B两点,第一象限内的点P(1,m)在椭圆上,直线OP平分线段AB,且|AB|=
3
2
2
,求:直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ae2x+(a+1)x+1,a<-1对任意x1,x2∈R,有f(x1)-f(x2)≥4(e x1-e x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=3,|
b
|=2
3
,且
a
⊥(
a
+
b
),则
b
a
方向上的投影
 

查看答案和解析>>

同步练习册答案