精英家教网 > 高中数学 > 题目详情
已知线段AB的端点B的坐标是(3,4),端点A在圆(x+1)2+y2=4上运动,则线段AB的中点M的轨迹方程为
 
考点:轨迹方程
专题:综合题,直线与圆
分析:利用M、N为AB、PB的中点,根据三角形中位线定理得出:MN∥PA且MN=
1
2
PA=1,从而动点M的轨迹为以N为圆心,半径长为1的圆.最后写出其轨迹方程即可.
解答: 解:圆(x+1)2+y2=4的圆心为P(-1,0),半径长为2,
线段AB中点为M(x,y)
取PB中点N,其坐标为N(1,2)
∵M、N为AB、PB的中点,
∴MN∥PA且MN=
1
2
PA=1.
∴动点M的轨迹为以N为圆心,半径长为1的圆.
所求轨迹方程为:(x-1)2+(y-2)2=1.
故答案为:(x-1)2+(y-2)2=1.
点评:本题考查轨迹方程,利用的是定义法,定义法是若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x|x-m|,x∈R.且f(4)=0,
(1)求实数m的值.
(2)作出函数f(x)的图象.
(3)根据图象写出f(x)的单调区间,写出不等式f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知log35=2a,3b=7,用a,b表示log359.
(2)计算:lg25+
2
3
lg8+lg5×lg20+(lg2)2

查看答案和解析>>

科目:高中数学 来源: 题型:

2012log201211=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆x2+y2+ax-2ay-2=0的半径的最小值是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

要从7个班中选10人参加演讲比赛,每班至少1人,共有
 
种不同的选法.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(α-β)cosα-cos(α-β)sinα=
3
5
,那么cos2β的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)满足:对任意实数a,b都有f(a+b)=f(a)f(b),且f(1)=1,则
f(2)
f(1)
+
f(3)
f(2)
+
f(4)
f(3)
+…+
f(2011)
f(2010)
+
f(2012)
f(2011)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x,x∈R,可以表示为一个奇函数g(x)与一个偶函数h(x)之和,若不等式2ag(x)+h(2x)≥0对任意x∈[1,2]恒成立,则实数a的取值范围为
 

查看答案和解析>>

同步练习册答案