11£®Èôº¯Êýy=f£¨x£©£¬x¡ÊAÂú×㣺?x1£¬x2¡ÊA£¬£¨x1-x2£©[f£¨x1£©-f£¨x2£©]¡Ü0ºã³ÉÁ¢£¬Ôò³Æº¯Êýy=f£¨x£©Îª¶¨ÒåÔÚAÉϵġ°·ÇÔöº¯Êý¡±£¬Èôº¯Êýf£¨x£©ÊÇÇø¼ä[0£¬1]Éϵġ°·ÇÔöº¯Êý¡±£¬ÇÒf£¨0£©=1£¬f£¨x£©+f£¨1-x£©=1£¬ÓÖµ±x¡Ê[0£¬$\frac{1}{4}$]ʱ£¬f£¨x£©¡Ü-2x+1ºã³ÉÁ¢£¬ÓÐÏÂÁÐÃüÌ⣺¢Ù?x¡Ê£¨0£¬1]£¬f£¨x£©¡Ý0£»¢ÚÈôx1£¬x2¡Ê[0£¬1]£¬ÇÒx1¡Ùx2£¬Ôòf£¨x1£©¡Ùf£¨x2£©£»¢Ûf£¨$\frac{1}{8}$£©+f£¨$\frac{5}{11}$£©+f£¨$\frac{7}{13}$£©+f£¨$\frac{7}{8}$£©=2£®ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÚB£®¢Ú¢ÛC£®¢Ù¢ÛD£®¢Ù¢Ú¢Û

·ÖÎö ¸ù¾Ý¡°·ÇÔöº¯Êý¡±µÄ¶¨Ò壬½áºÏº¯Êýµ¥µ÷ÐÔµÄÐÔÖÊ·Ö±ð½øÐÐÅжϼ´¿ÉµÃµ½½áÂÛ£®

½â´ð ½â£º¢Ù£¬¡ßf£¨0£©=1£¬f£¨x£©+f£¨1-x£©=1£¬
¡àf£¨0£©+f£¨1£©=1£¬¼´f£¨1£©=0£¬
¡à¶Ô?x¡Ê[0£¬1]£¬¸ù¾Ý¡°·ÇÔöº¯Êý¡±µÄ¶¨ÒåÖªf£¨x£©¡Ýf£¨1£©=0£®¹Ê¢ÙÕýÈ·£»
¢Ú¡ßµ±x¡Ê[0£¬$\frac{1}{4}$]ʱ£¬f£¨x£©¡Ü-2x+1ºã³ÉÁ¢£¬
¡àµ±x=$\frac{1}{4}$ʱ£¬f£¨$\frac{1}{4}$£©¡Ü-2¡Á$\frac{1}{4}$+1=$\frac{1}{2}$£¬
ÓÖf£¨x£©+f£¨l-x£©=l£¬¡àf£¨$\frac{1}{2}$£©=$\frac{1}{2}$£¬
Óɶø$\frac{1}{4}$£¼$\frac{1}{2}$£¬ÓÉ¡°·ÇÔöº¯Êý¡±µÄ¶¨Òå¿ÉÖª£¬f£¨$\frac{1}{4}$£©¡Ý$\frac{1}{2}$£®
ËùÒÔf£¨$\frac{1}{4}$£©=$\frac{1}{2}$£®
ͬÀíÓÐf£¨$\frac{3}{4}$£©=$\frac{1}{2}$£®
µ±x¡Ê[$\frac{1}{4}$£¬$\frac{3}{4}$]ʱ£¬ÓÉ¡°·ÇÔöº¯Êý¡±µÄ¶¨Òå¿ÉÖª£¬f£¨$\frac{1}{4}$£©¡Üf£¨x£©¡Üf£¨$\frac{3}{4}$£©£¬¡àf£¨x£©=$\frac{1}{2}$£®ËùÒÔ¢Ú²»ÕýÈ·£»
¢ÛÓÉ¢ÚÖУ¬µ±x¡Ê[$\frac{1}{4}$£¬$\frac{3}{4}$]ʱ£¬f£¨x£©=$\frac{1}{2}$£®¿ÉµÃ£ºf£¨$\frac{5}{11}$£©=f£¨$\frac{7}{13}$£©=$\frac{1}{2}$£¬
ÓÉf£¨x£©+f£¨1-x£©=1µÃ£ºf£¨$\frac{1}{8}$£©+f£¨$\frac{7}{8}$£©=1£¬
¹Êf£¨$\frac{1}{8}$£©+f£¨$\frac{5}{11}$£©+f£¨$\frac{7}{13}$£©+f£¨$\frac{7}{8}$£©=2£¬¹Ê¢ÛÕýÈ·£»
¹ÊÕýÈ·ÃüÌâÓУº¢Ù¢Û£¬
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÁËÃüÌâµÄÕæ¼ÙÅжÏÓëÔËÓã¬Éæ¼°³éÏóº¯ÊýµÄÐÔÖÊ£¬º¯Êýµ¥µ÷ÐÔµÄÓ¦Óã¬ÕýÈ·Àí½âж¨ÒåÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®£¬¿¼²éÁËѧÉúµÄ³éÏó˼άÄÜÁ¦£¬ÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÎªÁËÔöÇ¿»·±£Òâʶ£¬Ä³Ð£´ÓÄÐÉúÖÐËæ»úÖÆÈ¡ÁË60ÈË£¬´ÓÅ®ÉúÖÐËæ»úÖÆÈ¡ÁË50È˲μӻ·±£ÖªÊ¶²âÊÔ£¬Í³¼ÆÊý¾ÝÈç±íËùʾ£¬¾­¼ÆËãK2=7.822£¬Ôò»·±£ÖªÊ¶ÊÇ·ñÓÅÐãÓëÐÔ±ðÓйصİÑÎÕΪ£¨¡¡¡¡£©
ÓÅÐã·ÇÓÅÐã×ܼÆ
ÄÐÉú402060
Å®Éú203050
×ܼÆ6050110
¸½£ºx2=$\frac{n£¨{n}_{11}{n}_{22}-{n}_{12}{n}_{21}£©^{2}}{{n}_{1}+{n}_{2}+{n}_{+1}{n}_{+2}}$
P£¨K2¡Ýk£©0.5000.1000.0500.0100.001
k0.4552.7063.8416.63510.828
A£®90%B£®95%C£®99%D£®99.9%

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èô$|{\begin{array}{l}{2^x}&1\\ 3&{2^x}\end{array}}|=0$£¬ÔòxµÄÖµÊÇ${log}_{2}\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®É趨ÒåÔÚDÉϵĺ¯Êýy=h£¨x£©ÔÚµãP£¨x0£¬h£¨x0£©´¦µÄÇÐÏß·½³ÌΪl£ºy=g£¨x£©£¬µ±x¡Ùx0ʱ£¬Èô$\frac{h£¨x£©-g£¨x£©}{x-{x}_{0}}$£¾0ÔÚDÄÚºã³ÉÁ¢£¬Ôò³ÆPΪº¯Êýy=h£¨x£©µÄ¡°Àà¶Ô³Æµã¡±£¬Ôòf£¨x£©=lnx+2x2-xµÄ¡°Àà¶Ô³Æµã¡±µÄºá×ø±êÊÇ£¨¡¡¡¡£©
A£®eB£®$\frac{1}{2}$C£®$\sqrt{2}$D£®$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬¡÷ABCÖУ¬¡ÏC=90¡ã£¬AC=6£¬BC=8£¬µãD´ÓµãC³ö·¢£¬ÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÑØ×ÅCBÏòµãBÔ˹¦£¬¡÷ADEºÍ¡÷ADC¹ØÓÚAD³ÉÖá¶Ô³Æ£¬Á¬½ÓBE£¬ÉèµãDÔ˶¯Ê±¼äΪtÃ룮
£¨1£©µ±tΪºÎֵʱ£¬¡÷BDEÊÇÒÔBEΪµ×µÄµÈÑüÈý½ÇÐΣ¿
£¨2£©µ±tΪºÎֵʱ£¬ÓÃBD£¬DE¡¢ADµÄ³¤¶È×÷ΪÏß¶ÎËùΧ³ÉµÄÈý½ÇÐÎÊÇÒÔBDΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐΣ¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÔÚÊýÁÐ{an}ÖУ¬a1£¼-|k|£¬an+1=$\frac{1}{2}$£¨an+$\frac{{k}^{2}}{{a}_{n}}$£©£¨n¡ÊN*£¬k¡ÊR£¬k¡Ù0£©
£¨1£©ÅжÏÊýÁÐ{an}µÄÔö¼õÐÔ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇóÖ¤£ºSn£¾2a1+£¨2-n£©|k|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=lnx-x3Óëg£¨x£©=x3-axµÄͼÏóÉÏ´æÔÚ¹ØÓÚxÖáµÄ¶Ô³Æµã£¬ÔòaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨-¡Þ£¬e£©B£®£¨-¡Þ£¬e]C£®£¨-¡Þ£¬$\frac{1}{e}$£©D£®£¨-¡Þ£¬$\frac{1}{e}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®µ¥Î»ÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×ã|3$\overrightarrow{a}$-4$\overrightarrow{b}$|=5£¬Ôò|$\overrightarrow{a}$+2$\overrightarrow{b}$|=£¨¡¡¡¡£©
A£®3B£®$\sqrt{3}$C£®5D£®$\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=x+alnx£¬a¡ÊR£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©µ±x¡Ê[1£¬2]ʱ£¬¶¼ÓÐf£¨x£©£¾0³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£»
£¨¢ó£©ÊÔÎʹýµãP£¨1£¬3£©¿É×÷¶àÉÙÌõÖ±ÏßÓëÇúÏßy=f£¨x£©ÏàÇУ¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸