精英家教网 > 高中数学 > 题目详情
已知关于x的方程
|cosx|
x
=k在(0,+∞)有且只有两根,记为α、β(α<β),则βtanβ=
 
考点:根的存在性及根的个数判断
专题:函数的性质及应用
分析:由函数f(x)=|cosx|-kx得到g(x)=|cosx|和函数h(x)=kx,再画出两函数的图象,问题得解.
解答: 解;解:原题等价于方程|cosx|=kx在(0,+∞)恰有两个不同的解,
等价于函数g(x)=|cosx|与函数h(x)=kx的图象在(0,+∞)恰有两个交点(如图),



在(
π
2
,π)内的交点横坐标为β,且此时直线h(x)=kx与曲线g(x)=|cosx|相切,切点为(β,kβ),
又x∈(
π
2
,π)时,g(x)=-cosx,g'(x)=sinx,
故k=g'(β)=sinβ,∴kβ=g(β)=-cosβ.
即cosβ=-βsinβ,
βtanβ=-1
故答案为:-1
点评:考查函数零点,导数的应用,解题时可结合图形,难度适中.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)是定义在R上的函数,并且对任意的实数x,y都满足f(x+y)=f(x)•f(y).当x>0时,f(x)>1,f(1)=2.
(1)求f(0)和f(3)的值;
(2)证明f(x)是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m<
t2+4
3-2t
,t∈[0,1],求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC中,角A、B、C的对边长分别为a、b、c,向量
m
=(cosC+sinC,1),
n
=(cosC-sinC,
1
2
),且
m
n

(1)求角C的大小;
(2)若边c=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=-x3+15x2+33x-6的单调增区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
sinπx,x∈[0,1]
log2013x,x∈(1,+∞)
,若满足f(a)=f(b)=f(c),(a、b、c互不相等),则a+b+c的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={(x,y)|y=log2x},B={(x,y)|y=2x},则A∩B=(  )
A、(0,+∞)B、{1,2}
C、{(1,2)}D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin
π
2
x,g(x)=2-
3
4
|x-3|,x∈[-1,7],则函数h(x)=f(x)-g(x)的所有零点之和为(  )
A、6B、12C、16D、18

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.

(1)证明:BN⊥平面C1B1N;
(2)求点C1到面CB1N的距离.

查看答案和解析>>

同步练习册答案