精英家教网 > 高中数学 > 题目详情
16.以下给出了5个命题
(1)两个长度相等的向量一定相等;
(2)相等的向量起点必相同;
(3)若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,且$\overrightarrow{a}$≠$\overrightarrow{0}$,则$\overrightarrow{b}$=$\overrightarrow{c}$;
(4)若向量$\overrightarrow{a}$的模小于$\overrightarrow{b}$的模,则$\overrightarrow{a}$<$\overrightarrow{b}$.
(5)若$\overrightarrow{b}$=$\overrightarrow{c}$,且$\overrightarrow{a}$≠$\overrightarrow{0}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$
(6)与$\overrightarrow a$同方向的单位向量为$\frac{\overrightarrow a}{{|{\overrightarrow a}|}}$
其中正确命题的个数共有(  )
A.3 个B.2  个C.1  个D.0个

分析 根据向量的物理背景与概念、数量积的概念逐个分析.

解答 解:两个向量相等的充要条件是大小相等且方向相同,
所以两个长度相等的向量不一定相等,故(1)错误;
两个向量只要大小相等且方向相同,就是相等向量,
所以相等的向量起点可以不相同,故(2)错误;
若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,且$\overrightarrow{a}$≠$\overrightarrow{0}$,则$\overrightarrow{b}$=$\overrightarrow{c}$或$\overrightarrow{a}⊥\overrightarrow{b}$且$\overrightarrow{a}⊥\overrightarrow{c}$,故(3)错误;
(4)∵两个向量不能比较大小,∴$\overrightarrow{a}$<$\overrightarrow{b}$不正确,故(4)错误;
(5)由(3)可以得到(5)正确;
(6)根据单位向量的定义可以(6)正确.
故正确命题的个数为2个,
故选:B.

点评 本题考查向量的概念,两个向量的数量积的定义和性质,注意向量的数量积与实数的乘积的区别,正确理解向量相等的含义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,四棱锥C-ABED中,AC=4,BC=3,四边形ABED是边长为$\sqrt{13}$的正方形,若G,F分别是线段EC,BD的中点.
(1)求证:GF∥底面ABC;
(2)若点P为线段CD的中点,求三角形GFP的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知随机变量X~B(6,$\frac{1}{3}$),那么D(X)=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.sin(-60°)的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若C${\;}_{x}^{12}$=C${\;}_{x}^{18}$,则x=30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.化简:
(1)$\frac{\sqrt{1+2sin20°cos20°}}{sin20°+\sqrt{1-si{n}^{2}20°}}$     
 (2)$\frac{\sqrt{1+2sin20°cos160°}}{sin160°-\sqrt{1-si{n}^{2}20°}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.曲线y=1+sinx在点P(0,1)处的切线方程为x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若直线$\left\{\begin{array}{l}x=1-2t\\ y=2+3t\end{array}\right.$(t为参数)与直线4x+ky=1垂直,则常数k=(  )
A.-6B.$-\frac{1}{6}$C.6D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.东南花都某花卉展区拟设计一个边界用篱笆围成的扇形花圃.
(Ⅰ)若花圃的设计面积为36m2,则扇形的半径为多少米时,所用的篱笆最短,最短的篱笆是多少米?
(Ⅱ)现有一段36m的篱笆用来围成这个花圃,问扇形的半径应设计为多少米时,花圃的面积最大?最大面积是多少?

查看答案和解析>>

同步练习册答案