精英家教网 > 高中数学 > 题目详情
9.周长为20的矩形绕其一边旋转形成一个圆柱,该圆柱的侧面积的最大值是(  )
A.25πB.50πC.100πD.200π

分析 根据题意,设出矩形的长、宽,求出圆柱的侧面积,再利用基本不等式,即可求得结论.

解答 解:设矩形的长、宽分别是x,y,则x+y=10,
所以圆柱的侧面积S=2πxy=2π$\sqrt{xy}$2≤2π($\frac{x+y}{2}$)2=2π×25=50π.
当且仅当x=y=5时,取“=”号.
∴当矩形的长、宽都是5时,旋转所形成的圆柱侧面积最大值是50π.
故选:B

点评 本题考查圆柱的侧面积,考查基本不等式的运用,注意基本不等式的使用条件是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若不等式|2x-m|≤|3x+6|恒成立,则实数m的取值范围是{m|m=-4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°;
④sin2(-30°)+cos260°-sin(-30°)cos60°;
⑤sin2(-25°)+cos255°-sin(-25°)cos55°.
(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广到一个三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某商场在今年“十一”黄金周期间采取购物抽奖的方式促销(每人至多抽奖一次),设了金奖和银奖,奖券共2000张.在某一时段对30名顾客进行调查,其中有$\frac{2}{3}$的顾客没有得奖,而得奖的顾客中有$\frac{3}{5}$的顾客得银奖,若对这30名顾客随机采访3名顾客.
(1)求选取的3名顾客中至少有一人得金奖的概率;
(2)求选取的3名顾客中得金奖人数不多于得银奖人数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若{an}是等比数列,an>0,且a2a4+2a3a5+a4a6=25,那么a3+a5的值为(  )
A.5B.-5C.-5或5D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=$\sqrt{3}$,点F是PB的中点,点E在棱BC上移动.
(Ⅰ)当E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅱ)当BE为何值时,PA与平面PDE所成角的大小为45°?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在复平面内,与复数z=-3+4i的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=f(x)的定义域为{x|-3≤x≤8,且x≠5},值域为{y|-1≤y≤2,且y≠0}.下列关于函数y=f(x)的说法:①当x=-3时,y=-1;②点(5,0)不在函数y=f(x)的图象上;③将y=f(x)的图象补上点(5,0),得到的图象必定是一条连续的曲线;④y=f(x)是[-3,5)上的单调函数.⑤y=f(x)的图象与坐标轴只有一个交点.其中一定正确的说法的序号为②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知直线ax+4y-2=0与2x-5y+b=0互相垂直,垂足为(1,c),则a+b+c的值为(  )
A.-4B.20C.0D.24

查看答案和解析>>

同步练习册答案