精英家教网 > 高中数学 > 题目详情
9.已知一次考试共有60名同学参加,考生的成绩X~N(110,52),据此估计,大约应有57人的分数在下列哪个区间内(  )
A.(90,110]B.(95,125]C.(100,120]D.(105,115]

分析 利用P(|X-u|<2σ)=0.9544,即可得出结论.

解答 解:由于X~N(110,52),∴μ=110,σ=5
∵$\frac{57}{60}$≈0.95,P(|X-u|<2σ)=0.9544,
∴100<X<120,
故选:C.

点评 本题考查正态分布的意义,考查3σ原则,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知sinα是方程5x2-7x-6=0的根,求 $\frac{cos(\frac{π}{2}-α)•cos(\frac{π}{2}+α)}{sin(-α-\frac{3}{2}π)•sin(\frac{3}{2}π-α)•tan(α-2π)}$ 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$不共线,求作向量$\overrightarrow{a}$-$\overrightarrow{b}$-$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某县三所学校A、B、C分别在三个乡镇,其学生数量之比依次为2:3:5,现采用分层抽样方法获得了一个样本,如果样本中含有10名A学校的学生,那么此样本的容量是50.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二次函数f(x)=ax2+bx+c(a≠0).
(1)若x1,x2∈R,x1<x2,且f(x1)≠f(x2).求证:关于x的方程f(x)=$\frac{1}{2}$[f(x1)+f(x2)]有两个不相等的实数根,且必有一个根属于(x1,x2).
(2)若关于x的方程f(x)=$\frac{1}{2}$[f(x1)+f(x2)]在(x1,x2)的根为m,且满足x1+x2=2m-1.设函数f(x)的图象的对称轴为x=x0,求证:x0<m2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(1)如图A,B两点的纵坐标分别为$\frac{4}{5}$,$\frac{12}{13}$,求cosα和cosβ的值.
(2)在(1)的条件下,求cos2(β-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)设函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)最高点D的坐标为(2,$\sqrt{2}$).由最高点运动到相邻的最低点时,函数曲线与x轴的交点为(6,0).
求A,ω和φ的值;
(2)当$x∈(0,\frac{π}{2})$时,求函数f(x)=sin2x+$\sqrt{3}$cos2x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若g(x)=$\frac{x-2}{x-a}$在区间(3,+∞)上是减函数,则a的取值范围是(  )
A.a≤3B.2<a≤3C.a>2D.a<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合M={x|-2≤x≤2},N={x|x≥2},则M∩N等于(  )
A.[-2,2]B.{2}C.[2,+∞)D.[-2,+∞)

查看答案和解析>>

同步练习册答案