精英家教网 > 高中数学 > 题目详情
14.函数y=tan($\frac{π}{4}$-x)的定义域是(  )
A.{x|x≠$\frac{π}{4}$}B.{x|x≠$\frac{π}{4}$,k∈Z}C.{x|x≠kπ+$\frac{π}{4}$,k∈Z}D.{x|x≠$\frac{3π}{4}$+kπ,k∈Z}

分析 根据正切函数的定义域,求函数y的定义域.

解答 解:函数y=tan($\frac{π}{4}$-x)=-tan(x-$\frac{π}{4}$),
令x-$\frac{π}{4}$≠$\frac{π}{2}$+kπ,k∈Z,
解得x≠$\frac{3π}{4}$+kπ,k∈Z,
∴函数y的定义域是{x|x≠$\frac{3π}{4}$+kπ,k∈Z}.
故选:D.

点评 本题考查了正切函数的定义域应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.假设小明家订了一份报纸,送报人可能在早上x(6≤x≤8)点把报纸送到小明家,小明每天离家去工作的时间是在早上y(7≤y≤9)点,记小明离家前不能看到报纸为事件M.
(1)若送报人在早上的整点把报纸送到小明家,而小明又是早上整点离家去工作,求事件M的概率;
(2)若送报人在早上的任意时刻把报纸送到小明家,而小明也是早上任意时刻离家去工作,求事件M的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆O:x2+y2=2,直线l:y=kx-2.
(1)若直线l与圆O交于不同的两点A,B,且$∠AOB=\frac{π}{2}$,求k的值;
(2)若$k=\frac{1}{2}$,P是直线l上的动点,过P作圆O的两条切线PC,PD,切点分别为C,D,求证:直线CD过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.不求值,比较下列函数值的大小.
(1)sin$\frac{13π}{6}$,sin$\frac{3π}{4}$
(2)sin(-$\frac{54π}{7}$),sin(-$\frac{63π}{8}$)
(3)cos$\frac{13π}{6}$,cos(-$\frac{7π}{4}$)
(4)cos(-$\frac{34π}{7}$),cos(-$\frac{47π}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆C:(x-3)2+(y-4)2=4,直线l过定点A(1,0).
(1)若l与圆C相切,求l的方程.
(2)若l与圆C相交于P、Q两点,若$|PQ|=2\sqrt{2}$,求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平面直角坐标系中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+s}\\{y=1-s}\end{array}\right.$(s为参数),曲线C的参数方程为$\left\{\begin{array}{l}{x=t+2}\\{y={t}^{2}}\end{array}\right.$(t为参数),若直线l与曲线C相交于A,B两点,则|AB|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,已知动点M到定点F(1,0)的距离与到定直线x=3的距离之比为$\frac{{\sqrt{3}}}{3}$.
(1)求动点M的轨迹C的方程;
(2)已知P为定直线x=3上一点.
①过点F作FP的垂线交轨迹C于点G(G不在y轴上),求证:直线PG与OG的斜率之积是定值;
②若点P的坐标为(3,3),过点P作动直线l交轨迹C于不同两点R、T,线段RT上的点H满足$\frac{PR}{PT}=\frac{RH}{HT}$,求证:点H恒在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角系xOy中,以原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标为ρ=2cosθ,且直线$l:\left\{\begin{array}{l}x=m+3t\\ y=4t\end{array}\right.$(t为参数)与曲线C交于不同两点A,B.
(1)求实数m的取值范围;
(2)设点M(m,0),若|MA|•|MB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若曲线C的参数方程为$\left\{{\begin{array}{l}{x=-1+\frac{1}{2}t}\\{y=2+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t为参数),则下列说法正确的是(  )
A.曲线C是直线且过点(-1,2)B.曲线C是直线且斜率为$\frac{{\sqrt{3}}}{3}$
C.曲线C是圆且圆心为(-1,2)D.曲线C是圆且半径为|t|

查看答案和解析>>

同步练习册答案