| A. | 882 | B. | 756 | C. | 750 | D. | 378 |
分析 由cos$\frac{π}{8}$>0,cos$\frac{2π}{8}$>0,cos$\frac{3π}{8}$>0,$cos\frac{4π}{8}$=0,…,cos$\frac{15π}{8}$=cos$\frac{π}{8}$>0,cos2π=1.可得S1>0,…,S6>0,S7=0,S8<0,…,S15<0,S16=0.可得在S1,S2,…,S16中,正数的个数是6个.利用三角函数的周期性,即可得出.
解答 解:∵cos$\frac{π}{8}$>0,cos$\frac{2π}{8}$>0,cos$\frac{3π}{8}$>0,$cos\frac{4π}{8}$=0,$cos\frac{5π}{8}$=-cos$\frac{3π}{8}$<0,$cos\frac{6π}{8}$=-cos$\frac{2π}{8}$<0,$cos\frac{7π}{8}$=-cos$\frac{π}{8}$<0,cos$\frac{8π}{8}$=-1<0,
$cos\frac{9π}{8}$=-cos$\frac{π}{8}$<0,$cos\frac{10π}{8}$=-cos$\frac{2π}{8}$<0,$cos\frac{11π}{8}$=-cos$\frac{3π}{8}$<0,$cos\frac{12π}{8}$=0,cos$\frac{13π}{8}$=cos$\frac{3π}{8}$>0,cos$\frac{14π}{8}$=cos$\frac{2π}{8}$>0,cos$\frac{15π}{8}$=cos$\frac{π}{8}$>0,cos2π=1.
∴S1>0,…,S6>0,S7=0,S8<0,…,S15<0,S16=0.
在S1,S2,…,S16中,正数的个数是6个.
由三角函数的周期性,可得:在S1,S2,…,S2000,正数的个数有750项.
S2001,…,S2015中,正数的个数也6项.
在S1,S2,…,S2015中,正数的个数是756.
故选:B.
点评 本题考查了三角函数的求值、诱导公式、三角函数的周期性、数列求和,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,-1]∪[7,9) | B. | [-3,-1]∪[7,9) | C. | [7,9) | D. | (-3,-1] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{5π}{12}$+kπ,$\frac{π}{12}$+kπ](k∈Z) | B. | [-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z) | ||
| C. | [-$\frac{π}{12}$+kπ,$\frac{5π}{12}$+kπ](k∈Z) | D. | [-$\frac{π}{6}$+kπ,$\frac{5π}{6}$+kπ](k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com