精英家教网 > 高中数学 > 题目详情
10.若Sn=cos$\frac{π}{8}$+cos$\frac{2π}{8}$+…+cos$\frac{nπ}{8}$(n∈N+),则在S1,S2,…,S2015中,正数的个数是(  )
A.882B.756C.750D.378

分析 由cos$\frac{π}{8}$>0,cos$\frac{2π}{8}$>0,cos$\frac{3π}{8}$>0,$cos\frac{4π}{8}$=0,…,cos$\frac{15π}{8}$=cos$\frac{π}{8}$>0,cos2π=1.可得S1>0,…,S6>0,S7=0,S8<0,…,S15<0,S16=0.可得在S1,S2,…,S16中,正数的个数是6个.利用三角函数的周期性,即可得出.

解答 解:∵cos$\frac{π}{8}$>0,cos$\frac{2π}{8}$>0,cos$\frac{3π}{8}$>0,$cos\frac{4π}{8}$=0,$cos\frac{5π}{8}$=-cos$\frac{3π}{8}$<0,$cos\frac{6π}{8}$=-cos$\frac{2π}{8}$<0,$cos\frac{7π}{8}$=-cos$\frac{π}{8}$<0,cos$\frac{8π}{8}$=-1<0,
$cos\frac{9π}{8}$=-cos$\frac{π}{8}$<0,$cos\frac{10π}{8}$=-cos$\frac{2π}{8}$<0,$cos\frac{11π}{8}$=-cos$\frac{3π}{8}$<0,$cos\frac{12π}{8}$=0,cos$\frac{13π}{8}$=cos$\frac{3π}{8}$>0,cos$\frac{14π}{8}$=cos$\frac{2π}{8}$>0,cos$\frac{15π}{8}$=cos$\frac{π}{8}$>0,cos2π=1.
∴S1>0,…,S6>0,S7=0,S8<0,…,S15<0,S16=0.
在S1,S2,…,S16中,正数的个数是6个.
由三角函数的周期性,可得:在S1,S2,…,S2000,正数的个数有750项.
S2001,…,S2015中,正数的个数也6项.
在S1,S2,…,S2015中,正数的个数是756.
故选:B.

点评 本题考查了三角函数的求值、诱导公式、三角函数的周期性、数列求和,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.某地区上年度电价为0.8元/kW•h,年用电量为akW•h,本年度计划将电价降到0.55 元/kW•h至0.75元/kW•h之间,而用户期待电价为0.4元/kW•h,下调电价后新增加的用电量与实际电价和用户期望电价的差成反比(比例系数为K),该地区的电力成本为0.3元/kW•h.(注:收益=实际用电量×(实际电价-成本价)),示例:若实际电价为0.6元/kW•h,则下调电价后新增加的用电量为$\frac{K}{0.6-0.4}$元/kW•h)
(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系;
(2)设K=0.2a,当电价最低为多少仍可保证电力部门的收益比上一年至少增长20%?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平面直角坐标系中,已知点P(3,0)在圆C:(x-m)2+(y-2)2=40内,动直线过点P且交圆C于A、B两点,若△ABC的面积的最大值是20,则实数m的取值范围是(  )
A.(-3,-1]∪[7,9)B.[-3,-1]∪[7,9)C.[7,9)D.(-3,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果函数f(x)=x2+2(a-1)x+2的单调减区间是(-∞,4],则a=(  )
A.3B.-3C.5D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设全集U={1,2,3,4,5,6},已知集合A={1,3,4},B={3,5,6},
求:
(1)A∩B,A∪B
(2)(∁UA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)是R上的奇函数,f(1)=1,且对任意x∈R都有f(x+4)=f(x)+f(2)成立,则f(2016)+f(2017)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,把f(x)的图象向右平移$\frac{π}{3}$个单位长度得到g(x)的图象,则g(x)的单调递增区间为(  )
A.[-$\frac{5π}{12}$+kπ,$\frac{π}{12}$+kπ](k∈Z)B.[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z)
C.[-$\frac{π}{12}$+kπ,$\frac{5π}{12}$+kπ](k∈Z)D.[-$\frac{π}{6}$+kπ,$\frac{5π}{6}$+kπ](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\frac{x}{1+x}$.
(1)求f(2)与$f(\frac{1}{2})$,f(3)与$f(\frac{1}{3})$的值.
(2)求f(1)+f(2)+f(3)+…+f(2 012)+$f({\frac{1}{2}})+f({\frac{1}{3}})+…+f({\frac{1}{2012}})$.
(3)由(1)中求得的结果,你能发现f(x)与$f(\frac{1}{x})$有什么关系?并证明你的发现.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若4a=3,则log23+log83=$\frac{8a}{3}$.(用a表示)

查看答案和解析>>

同步练习册答案