精英家教网 > 高中数学 > 题目详情
16.已知函数$f(x)=\frac{x}{1+x}$.
(1)求f(2)与$f(\frac{1}{2})$,f(3)与$f(\frac{1}{3})$的值.
(2)求f(1)+f(2)+f(3)+…+f(2 012)+$f({\frac{1}{2}})+f({\frac{1}{3}})+…+f({\frac{1}{2012}})$.
(3)由(1)中求得的结果,你能发现f(x)与$f(\frac{1}{x})$有什么关系?并证明你的发现.

分析 (1)利用函数的解析式求解函数值即可.
(2)求出$f(\frac{1}{x})$,得到f(x)+$f(\frac{1}{x})$的值,然后求和即可.
(3)利用(1)与(2),证明即可.

解答 解:(1)函数$f(x)=\frac{x}{1+x}$.
则f(2)=$\frac{2}{3}$,
$f(\frac{1}{2})$=$\frac{\frac{1}{2}}{1+\frac{1}{2}}$=$\frac{1}{3}$,
f(3)=$\frac{3}{4}$,
$f(\frac{1}{3})$=$\frac{\frac{1}{3}}{1+\frac{1}{3}}$=$\frac{1}{4}$.
(2)函数$f(x)=\frac{x}{1+x}$.f($\frac{1}{x}$)=$\frac{\frac{1}{x}}{1+\frac{1}{x}}$=$\frac{1}{1+x}$,
可得:f(x)+$f(\frac{1}{x})$=1.
f(1)+f(2)+f(3)+…+f(2 012)+$f({\frac{1}{2}})+f({\frac{1}{3}})+…+f({\frac{1}{2012}})$=f(1)+[f(2)+f($\frac{1}{2}$)]+[f(3)+f($\frac{1}{3}$)]+…+[f(2 012)+f($\frac{1}{2012}$)]=$\frac{1}{2}+$2011=$\frac{4023}{2}$.
(3)由(1)中求得的结果,发现f(x)与$f(\frac{1}{x})$的和为1.
证明:$f(x)=\frac{x}{1+x}$.f($\frac{1}{x}$)=$\frac{\frac{1}{x}}{1+\frac{1}{x}}$=$\frac{1}{1+x}$,
可得:f(x)+$f(\frac{1}{x})$=1.

点评 本题考查函数与方程的综合应用,函数值的求法,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上一点P到焦点距离的最大值为(  )
A.4B.2C.2$\sqrt{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若Sn=cos$\frac{π}{8}$+cos$\frac{2π}{8}$+…+cos$\frac{nπ}{8}$(n∈N+),则在S1,S2,…,S2015中,正数的个数是(  )
A.882B.756C.750D.378

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合M={x|x2-2x-3=0},N={x|-2<x≤4},M∩N=(  )
A.{x|-1<x≤3}B.{x|-1<x≤4}C.{-3,1}D.{-1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)={log_a}\frac{1-mx}{x-1}$(a>0,a≠1,m≠1)是奇函数.
(1)求实数m的值;
(2)判断函数f(x)在(1,+∞)上的单调性,并给出证明;
(3)当x∈(a-2,n)时,函数f(x)的值域是(1,+∞),求实数a与n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线y=a分别与曲线y=2x+5,y=x+lnx交于A,B两点,则|AB|的最小值为(  )
A.3B.4C.$\frac{{3\sqrt{2}}}{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(a+1)lnx+$\frac{a}{x}$-x(x>0),g(x)=ex-x-2,其中a为实数,e为自然对数的底数.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)的图象在点(2,f(2))处的切线的斜率为-$\frac{1}{2}$,求证:?x∈(0,+∞),f(x)<g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线a1x+b1y+5=0和a2x+b2y+5=0的交点是P(2,1),则过两点Q1(a1,b1)和Q2(a2,b2)的直线方程是(  )
A.x-2y+5=0B.2x-y+5=0C.x+2y+5=0D.2x+y+5=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.根据下列条件,写出数列的前4项,并归纳猜想它的通项公式(不需证明).
(1)a1=0,an+1=$\frac{1}{2-{a}_{n}}$; 
(2)对一切的n∈N*,an>0,且2$\sqrt{{S}_{n}}$=an+1.

查看答案和解析>>

同步练习册答案