精英家教网 > 高中数学 > 题目详情
20.已知一个几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{7}{6}$B.$\frac{7}{3}$C.$\frac{5}{3}$D.$\frac{5}{6}$

分析 由已知中的三视图可得:该几何体上部是一个正方体切去一个角,下部是一个底面为梯形的四棱柱,进而可得答案.

解答 解:由已知中的三视图可得:该几何体上部是一个正方体切去一个角,下部是一个底面为梯形的四棱柱,
故上部的几何体的体积为:1×1×1-$\frac{1}{3}$×$\frac{1}{2}$×1×1×1=$\frac{5}{6}$,
下部的体积为:$\frac{1}{2}$×(1+2)×1×1=$\frac{3}{2}$,
故组合体的体积V=$\frac{5}{6}$+$\frac{3}{2}$=$\frac{7}{3}$,
故选:B

点评 本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设实数a∈(1,2),关于x的一元二次不等式x2-(a2+3a+2)x+3a(a2+2)<0的解为(  )
A.(3a,a2+2)B.(a2+2,3a)C.(3,4)D.(3,6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线l:x+3y-2b=0过双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$的右焦点F,则双曲线的渐近线方程为y=±$\frac{\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.抛物线y2=8x的准线与双曲线C:$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1的两条渐近线所围成的三角形面积为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知直线2x+y-10=0过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦点且与该双曲线的一条渐近线垂直,则该双曲线的方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{9}=1$B.$\frac{x^2}{20}-\frac{y^2}{5}=1$C.$\frac{x^2}{5}-\frac{y^2}{20}=1$D.$\frac{x^2}{9}-\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线C:y2=2px(p>0),O为坐标原点,F为其焦点,准线与x轴交点为E,P为抛物线上任意一点,则$\frac{|PF|}{|PE|}$(  )
A.有最小值$\frac{\sqrt{2}}{2}$B.有最小值1C.无最小值D.最小值与p有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设(1+x+x2n=a0+a1x+a2x2+…+a2nx2n,则a0+a2+…+a2n的值是(  )
A.$\frac{1}{2}$(3n-1)B.$\frac{1}{2}$(3n+1)C.3nD.3n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求解下列问题:
(1)用排列数表示(55-n)(56-n)…(69-n)(n∈N*且n<55);
(2)计算$\frac{{2A}_{8}^{5}+{7A}_{8}^{4}}{{A}_{8}^{8}{-A}_{9}^{5}}$;
(3)解方程:${A}_{2x+1}^{4}$=140${A}_{x}^{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若集合A={x|-2≤x≤1},B={x|x<0},则A∪B=(  )
A.(-∞,0)B.(-∞,1]C.[-2,0)D.(1,+∞)

查看答案和解析>>

同步练习册答案