精英家教网 > 高中数学 > 题目详情
6.一个棱锥的三视图如图所示,其中侧视图为正三角形,则四棱锥的体积是$\frac{{\sqrt{3}}}{6}$.

分析 由四棱锥的三视图可知,该四棱锥底面为ABCD为边长为1的正方形,△PAD是边长为1的等边三角形,PO垂直于AD于点O,其中O为AD的中点,即可求出它的体积.

解答 解:由四棱锥的三视图可知,该四棱锥底面为ABCD为边长为1的正方形,
△PAD是边长为1的等边三角形,PO垂直于AD于点O,其中O为AD的中点,
所以四棱锥的体积为V=$\frac{1}{3}×1×1×\frac{\sqrt{3}}{2}$=$\frac{{\sqrt{3}}}{6}$.
故答案为$\frac{{\sqrt{3}}}{6}$.

点评 本题主要考查三视图的识别和应用以及锥体的体积的计算,考查线面垂直的判断,考查学生的推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若tanα=$\frac{1}{3}$,则sin4α-cos4α+6sin$\frac{α}{2}$cos$\frac{α}{2}$cosα=(  )
A.1B.$\frac{1}{3}$C.$\frac{1}{9}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=(x-a)(x-b)(其中a>b)的图象如图所示,则函数g(x)=ax+b的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,将正三角形ABC分割成m个边长为1的小正三角形和一个灰色菱形,这个灰色菱形可以分割成n个边长为1的小正三角形.若m:n=47:25,则三角形ABC的边长是(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=1nx.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求证:当x>0时,$f(x)≥1-\frac{1}{x}$;
(Ⅲ)若x-1>a1nx对任意x>1恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱柱ABC-A1B1C1中,底面△ABC是边长为2的等边三角形,D为AB中点.
(Ⅰ)求证:BC1∥平面A1CD;
(Ⅱ)若四边形CAA1C1和BAA1B1都是正方形,求多面体CA1C1BD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z1=1-i,z2=-2+3i,则复数$\frac{{i•{z_2}}}{z_1}$对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AC=AB1
(1)证明:AB⊥B1C;
(2)若$B{B_1}=a,∠CB{B_1}=\frac{2π}{3}$,平面AB1C⊥平面BB1C1C,直线AB与平面BB1C1C所成角为$\frac{π}{4}$,求点B1到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的左右焦点分别为F1、F2,离心率为$\frac{2\sqrt{3}}{3}$,且经过右焦点F2的直线l与双曲线的右支交于A、B两点.
(1)求双曲线E的方程;
(2)求△ABF1的面积的取值范围.

查看答案和解析>>

同步练习册答案