精英家教网 > 高中数学 > 题目详情
5.直线(2a+5)x-y+4=0与2x+(a-2)y-1=0互相垂直,则a的值是(  )
A.-4B.4C.3D.-3

分析 运用两直线垂直的条件,解方程即可得到所求值.

解答 解:直线(2a+5)x-y+4=0与2x+(a-2)y-1=0互相垂直,
可得2(2a+5)+(2-a)=0,
解得a=-4,
故选:A.

点评 本题考查两直线垂直的条件,考查方程思想和运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.对于任意两个正实数a,b,定义a*b=λ×$\frac{a}{b}$,其中常数λ∈(1,$\frac{\sqrt{6}}{2}$),“×”时实数乘法运算,若8*3=3,则λ=$\frac{9}{8}$;若a≥b>0,a*b与b*a都是集合{x|x=$\frac{n}{2}$,n∈Z}中的元素,则a*b=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列各组函数中,f(x)与g(x)相等的一组是(  )
A.f(x)=x,g(x)=$\sqrt{{x}^{2}}$B.f(x)=|x-1|,g(x)=$\left\{\begin{array}{l}{x-1(x≥1)}\\{1-x(x<1)}\end{array}\right.$
C.f(x)=1,g(x)=$\frac{|x|}{x}$D.f(x)=$\frac{{x}^{2}-9}{x+3}$,g(x)=x-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.△ABC的三条中线AD、BE、CF交于点G,若AD=3,则$\overrightarrow{GA}$•$\overrightarrow{GB}$+$\overrightarrow{GA}$•$\overrightarrow{GC}$的值为(  )
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知0<α<$\frac{π}{2}$<β<π,tan$\frac{α}{2}$=$\frac{1}{3}$,cos(β-α)=-$\frac{\sqrt{2}}{10}$.
(1)求sinα的值;
(2)求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}满足a1=1,an+1=$\frac{2}{3}$an,n∈N*,则an=(  )
A.an=($\frac{2}{3}$)n-1B.an=($\frac{2}{3}$)nC.an=($\frac{3}{2}$)n-1D.an=($\frac{3}{2}$)n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=$\left\{\begin{array}{l}{-x+4,x≤3}\\{lo{g}_{a}x,x>3}\end{array}\right.$ (a>0且a≠1),函数g(x)=f(x)-k.
①若a=$\frac{1}{3}$,函数g(x)无零点,则实数k的取值范围为[-1,1);
②若f(x)有最小值,则实数a的取值范围是(1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设随机变量X服从正态分布N(2,32),若P(X>m-1)=P(X<2m+1),则m=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列四个推理中,属于类比推理的是(  )
A.因为铜、铁、铝、金、银等金属能导电,所有一切金属都能导电
B.一切奇数都不能被2整除,(250+1)是奇数,所以(250+1)不能被2整除
C.在数列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$可以计算出a2=$\frac{1}{2}$,a3=$\frac{1}{3}$,a4=$\frac{1}{4}$,所以推理出an=$\frac{1}{n}$
D.若双曲线的焦距是实轴长的2倍,则此双曲线的离心率为2,类似的,若椭圆的焦距是长轴长的一半,则此椭圆的离心率为$\frac{1}{2}$

查看答案和解析>>

同步练习册答案