精英家教网 > 高中数学 > 题目详情
12.若四边形ABCD为菱形,则下列等式中成立的是(  )
A.$\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$B.$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{BC}$C.$\overrightarrow{AC}$+$\overrightarrow{BA}$=$\overrightarrow{AD}$D.$\overrightarrow{AC}$+$\overrightarrow{AD}$=$\overrightarrow{DC}$

分析 根据平行四边形的性质,向量的几何运算法则即可得出答案.

解答 解:∵四边形ABCD为菱形,
∴$\overrightarrow{AB}$$+\overrightarrow{BC}$=$\overrightarrow{AC}$,
$\overrightarrow{AB}$$+\overrightarrow{AC}$$≠\overrightarrow{BC}$,
$\overrightarrow{AC}$$+\overrightarrow{BA}$=$\overrightarrow{BC}$$≠\overrightarrow{AD}$,
$\overrightarrow{AC}$$+\overrightarrow{AD}$$≠\overrightarrow{DC}$,
故选:A.

点评 本题简单的考察了向量的几何运算,根据加法法则,减法法则,属于容易题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某单位对360位应聘者进行了2个科目的测试,每个科目的成绩由高到低依次为优秀、良好和一般,从所有应聘者的成绩中随机抽取27个数据统计如下:
 优秀 良好一般 
 优秀 b 2 3
 良好 3 4 a
 一般 3 33
由表可见,科目一成绩为优秀且科目二成绩为良好的有2人,若将表中数据的频率设为概率,则估计有80位应聘者科目一的乘积高于科目二的成绩.
(Ⅰ)估计两科成绩相同的应聘者的人数;
(Ⅱ)从所有科目一成绩为良好的应聘者中随机抽取3人,设这3人成绩中优秀科目总数为ξ,求随机变量ξ的分布列及其数学期望Eξ;
(Ⅲ)根据两科测试成绩,每位应聘者可能属于9个不同的成绩组之一,设表中两科成绩不同的各组人数的方差为s12,科目一成绩不高于科目二成绩的各组人数的方差为s22,比较s12与s22的大小.(只写结论即可)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知平面区域D={(x,y)|0≤x≤1,|y|≤1},?(x,y)∈D,$\sqrt{{(x-\frac{1}{4})}^{2}{+y}^{2}}$≥|x+$\frac{1}{4}$|的概率P=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知tan(α+β)=0,求证:sin(α+2β)+sinα=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设f(x)=x2ln($\frac{2}{1-x}$+a)是奇函数,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,∠C=90°,M是长度为定值的BC边上一点,sin∠BAM=$\frac{1}{3}$.若$\overrightarrow{BM}•\overrightarrow{MA}$取得最大值1时,则AC的长为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$满足|$\overrightarrow{{e}_{1}}$|=|$\overrightarrow{{e}_{2}}$|=1,非零向量$\overrightarrow{a}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,x>0,y>0,若x=2|$\overrightarrow{a}$|,则$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角θ的最小值为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若直线l:$\frac{x}{a}$+$\frac{y}{b}$=1(a>0,b>0)经过点(1,2),则直线l作坐标轴所围成的三角形面积的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.要制作一个容积为8m3,高为2m的无盖长方体容器,若容器的底面造价是每平方米200元,侧面造型是每平方米100元,则该容器的最低总造价为(  )
A.1200元B.2400元C.3600元D.3800元

查看答案和解析>>

同步练习册答案