精英家教网 > 高中数学 > 题目详情
15.函数f(x)=x2+3x-4 的单调递增区间是(  )
A.(-∞,$\frac{3}{2}$]B.[-$\frac{3}{2}$,+∞)C.[$\frac{3}{2}$,4)D.(-1,$\frac{3}{2}$]

分析 判断二次函数的开口方向,求出对称轴,即可得到结果.

解答 解:函数f(x)=x2+3x-4 的开口向上,对称轴为:x=$-\frac{3}{2}$,
函数f(x)=x2+3x-4 的单调递增区间是:[-$\frac{3}{2}$,+∞).
故选:B.

点评 本题考查二次函数的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.对于函数f(x)=log${\;}_{\frac{1}{2}}$(x2-2ax+3).
(1)若函数在[-1,+∞)上有意义,求a的取值范围;
(2)若函数在(-∞,1]上是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.log2.56.25+ln(e$\sqrt{e}$)+log2(log216)=$\frac{11}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知△ABC的顶点A(5,1),AC边上的高BH所在直线为
x-2y-5=0.AB边上的中线CM所在直线方程为2x-y-5=0.
(Ⅰ)求AC边所在直线的方程;
(Ⅱ)求顶点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.sin$\frac{5π}{3}$等于(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知0<α<$\frac{π}{2}$<β<π,tan$\frac{α}{2}$=$\frac{1}{3}$,cos(β-α)=-$\frac{\sqrt{2}}{10}$.
(1)求sinα的值;
(2)求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知cos(α-$\frac{π}{6}$)=-$\frac{1}{3}$,且α∈(0,π),则sinα等于(  )
A.$\frac{{2\sqrt{6}-1}}{6}$B.$\frac{{2\sqrt{2}+\sqrt{3}}}{6}$C.$\frac{{2\sqrt{6}+1}}{6}$D.$\frac{{2\sqrt{2}-\sqrt{3}}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,D为等腰三角形ABC底边BC的中点,则下列等式恒成立的是(  )
A.$\overrightarrow{AB}•\overrightarrow{AC}=0$B.$\overrightarrow{AD}•\overrightarrow{BC}=0$C.$\overrightarrow{AB}•\overrightarrow{AD}=0$D.$\overrightarrow{AD}•\overrightarrow{AC}=0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示的程序框图中,若f(x)=x2,g(x)=x,且h(x)≥m恒成立,则m的最大值是(  )
A.4B.3C.1D.0

查看答案和解析>>

同步练习册答案