精英家教网 > 高中数学 > 题目详情
9.已知点A是抛物线C:x2=2py(p>0)上一点,O为坐标原点,若A,B是以点M(0,10)为圆心,|OA|的长为半径的圆与抛物线C的两个公共点,且△ABO为等边三角形,则p的值是(  )
A.$\frac{5}{2}$B.$\frac{5}{3}$C.$\frac{5}{6}$D.$\frac{5}{9}$

分析 由题意,|MA|=|OA|,可得A的纵坐标为5,利用△ABO为等边三角形,求出A的横坐标,根据点A是抛物线C:x2=2py(p>0)上一点,即可求出p的值.

解答 解:由题意,|MA|=|OA|,∴A的纵坐标为5,
∵△ABO为等边三角形,
∴A的横坐标为$\frac{5\sqrt{3}}{3}$,
∵点A是抛物线C:x2=2py(p>0)上一点,
∴$\frac{25}{3}=2p×5$
∴p=$\frac{5}{6}$.
故选:C.

点评 本题考查抛物线的方程,考查抛物线与圆的综合,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.过椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的右焦点的直线交椭圆于A,B两点.若|AB|=8,则AB的中点P到右准线的距离为$\frac{20}{3}$到左准线的距离为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=arccos(x2-x)的单调递增区间为[$\frac{1-\sqrt{5}}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知角A,B∈(0,π)且cos2B=$\frac{2+cosA-2sin2B}{2-cosA}$,那么A的取值范围是(  )
A.(0,$\frac{π}{6}$)B.($\frac{π}{6}$,π)C.[$\frac{π}{3}$,π)D.(0,$\frac{π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=2x-2,则不等式f(x-1)≤2的解集是[-1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知△ABC中,AB=8,BC=10,AC=6,P点在平面ABC内,且$\overrightarrow{PB}$•$\overrightarrow{PC}$=-9,则|$\overrightarrow{PA}$|的取值范围为[1,4+$\sqrt{7}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等比数列{an}满足a1=3,an+1=-$\frac{1}{2}$an,则Sn=2+(-$\frac{1}{2}$)n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过双曲线C:$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1的右焦点F作一直线(不平行于坐标轴)交双曲线于A、B两点,若点M是AB的中点,O为坐标原点,则kAB•kOM的值为(  )
A.$\frac{5}{4}$B.-$\frac{5}{4}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线 $C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点为F,双曲线C与过原点的直线相交于A、B两点,连接AF,BF.若|AF|=6,|BF|=8,$cos∠BAF=\frac{3}{5}$,则该双曲线的离心率为5.

查看答案和解析>>

同步练习册答案