| A. | $\frac{{9\sqrt{3}}}{4}$ | B. | $\frac{{9\sqrt{3}}}{4}$或$\frac{{3\sqrt{3}}}{4}$ | C. | $\frac{{27\sqrt{3}}}{4}$ | D. | $\frac{{27\sqrt{3}}}{4}$或$\frac{{\sqrt{3}}}{4}$ |
分析 先画出图形,正三棱锥外接球的球心在它的高上,然后根据三角形相似解出正三棱锥的高,则棱锥体积可求.
解答 解:如图,设正三棱锥的高为h,球心在正三棱锥的高所在的直线上,H为底面正三棱锥的中心,
∵底面边长AB=3,∴AH=$\frac{2}{3}AD=\frac{2}{3}\sqrt{{3}^{2}-(\frac{3}{2})^{2}}=\frac{2}{3}×\frac{3\sqrt{3}}{2}$=$\sqrt{3}$.![]()
当S与球心在底面ABC的同侧时,有AH2+OH2=OA2,即$(\sqrt{3})^{2}+(h-2)^{2}={2}^{2}$,解得h=3,
棱锥的体积为V=$\frac{1}{3}×\frac{1}{2}×3×\frac{3\sqrt{3}}{2}×3=\frac{9\sqrt{3}}{4}$;
当S与球心在底面ABC的异侧时,有AH2+OH2=OA2,即$(\sqrt{3})^{2}+(2-h)^{2}={2}^{2}$,解得h=1,
棱锥的体积为V=$\frac{1}{3}×\frac{1}{2}×3×\frac{3\sqrt{3}}{2}×1=\frac{27\sqrt{3}}{4}$.
∴棱锥的体积为$\frac{{27\sqrt{3}}}{4}$或$\frac{{\sqrt{3}}}{4}$.
故选:D.
点评 本题考查棱柱、棱锥及棱台的体积,考查空间想象能力和思维能力,体现了分类讨论的数学思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (-∞,1] | C. | (-∞,0)∪(0,1] | D. | (0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [一l,+∞) | B. | (一1,+∞) | C. | (一∞,一1] | D. | (一∞,一l) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com