精英家教网 > 高中数学 > 题目详情
1.如图,圆x2+y2=8内有一点P(-1,2),AB为过点P的弦.
(1)当弦AB的倾斜角为135°时,求AB所在的直线方程及|AB|;
(2)当弦AB被点P平分时,写出直线AB的方程.

分析 (1)由倾斜角可得斜率为-1,然后根据过点P,写成点斜式,然后化成一般式即可.先求出圆心到直线AB的距离d,然后根据|AB|=$2\sqrt{{r^2}-{d^2}}$求值即可.
(2)根据OP⊥AB可求出AB的斜率,然后根据过点P,写出点斜式,转化为一般式方程即可.

解答 解:(1)依题意直线AB的斜率为-1,直线AB的方程为:y-2=-(x+1),即x+y-1=0;
圆心0(0,0)到直线AB的距离为d=$\frac{\sqrt{2}}{2}$,∴|AB|=2$\sqrt{8-\frac{1}{2}}$=$\sqrt{30}$;
(2)当弦AB被点P平分时,OP⊥AB,故AB的斜率为$\frac{1}{2}$,根据点斜式方程直线AB的方程为x-2y+5=0.

点评 本题考查用点斜式求直线方程,点到直线的距离公式,弦长公式的应用,求出圆心0(0,0)到直线AB的距离为d,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图所示,6个扇形区域A,B,C,D,E,F,现给这6个区域着色,要求同一个区域涂同一种颜色,相邻的两个区城不得使用同一种颜色,现有4种不同的颜色可用,那么一共有多少种不同的涂色方法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(普通中学做)已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,过右焦点F的直线l与C
相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为2.
(1)求椭圆C的方程;
(2)椭圆C上是否存在一点P,使得当l绕F转到某一位置时,有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立?若存在,求点P的坐标与直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,过坐标原点O的直线椭圆Г:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)于P,A两点,其中P在第一象限,B在椭圆Г上,直线AB与x轴交于点C.
(1)若椭圆Г的焦距为2$\sqrt{2}$,点P坐标为($\sqrt{2}$,1),求椭圆Г的标准方程;
(2)求证:kBP•kBA=-$\frac{{b}^{2}}{{a}^{2}}$;
(3)若BP⊥AP,PC⊥x轴,求椭圆Г的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设命题p:x2-4ax+3a2<0(其中a>0,x∈R),命题q:-x2+5x-6≥0,x∈R.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等差数列{an}的前n项和为Sn,若S3=6,a1=4,则S5等于(  )
A.-2B.0C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,焦点在直线x-2y-2=0上,且离心率为$\frac{1}{2}$.
(1)求椭圆方程;
 (2)过P(3,1)作直线l与椭圆交于A,B两点,P为线段AB的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数$\frac{5}{i-2}$等于(  )
A.2-iB.-2-iC.2+iD.-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.椭圆C的中心在坐标原点,焦点在x轴上,焦点到短轴端点的距离为2,离心率为$\frac{\sqrt{3}}{2}$.
(Ⅰ)求该椭圆的方程;
(Ⅱ)若直线l与椭圆C交于A,B两点且OA⊥OB,是否存在以原点O为圆心的定圆与直线l相切?若存在求出定圆方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案