分析 先求出满足条件的正三角形ABC的面积,再求出满π足条件正三角形ABC内的点到三角形的顶点A、B、C的距离均不小于1的图形的面积,然后代入几何概型公式即可得到答案.
解答
解:满足条件的正三角形ABC如图所示:
其中正三角形ABC的面积S三角形=$\frac{1}{2}×4×4×\frac{\sqrt{3}}{2}$=4$\sqrt{3}$
满足点到三角形顶点A、B、C距离都小于2的区域如图中阴影部分所示,其加起来是一个半径为2的半圆,
则S阴影=$\frac{1}{2}$π×22=2π,
则使取到的点到三个顶点A、B、C的距离都大于2的概率是
P=$\frac{{S}_{空白部分}}{{S}_{三角形}}$=$\frac{4\sqrt{3}-2π}{4\sqrt{3}}$=1-$\frac{\sqrt{3}}{6}$π.
故答案为:1-$\frac{\sqrt{3}}{6}$π
点评 本题主要考查几何概型的概率的计算,根据条件求出阴影部分的面积,结合几何概型的概率公式是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 平行于同一平面的两直线平行 | |
| B. | 垂直于同一平面的两平面平行 | |
| C. | 如果两条互相垂直的直线都分别平行于两个不同的平面,那么这两个平面平行 | |
| D. | 如果一个平面内一条直线垂直于另一个平面的一条垂线,那么这两个平面垂直 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $1-\frac{π}{4}$ | C. | $\frac{π}{8}$ | D. | $1-\frac{π}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com