精英家教网 > 高中数学 > 题目详情
11.已知菱形ABCD的边长为4,$∠ABC=\frac{π}{6}$,若在菱形内取一点,则该点到菱形的四个顶点的距离均大于1的概率为(  )
A.$\frac{π}{4}$B.$1-\frac{π}{4}$C.$\frac{π}{8}$D.$1-\frac{π}{8}$

分析 根据几何概型的概率公式求出对应区域的面积进行求解即可.

解答 解:分别以A,B,C,D为圆心,1为半径的圆,
则所以概率对应的面积为阴影部分,
则四个圆在菱形内的扇形夹角之和为2π,
则对应的四个扇形之和的面积为一个整圆的面积S=π×12=π,
∵S菱形ABCD=AB•BCsin$\frac{π}{6}$=4×4×$\frac{1}{2}$=8,
∴S阴影=S菱形ABCD-S空白=8-π×12=8-π.
因此,该点到四个顶点的距离大于1的概率P=$\frac{{S}_{阴影}}{{S}_{菱形}}$=$\frac{8-π}{8}$=$1-\frac{π}{8}$,
故选:D.

点评 本题主要考查几何概型的概率的计算,根据对应分别求出对应区域的面积是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知正△ABC的边长为4,若在△ABC内任取一点,则该点到三角形顶点A、B、C距离都不小于2的概率为1-$\frac{\sqrt{3}}{6}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.(x2-$\frac{1}{2x}$)6的展开式中,常数项是(  )
A.$\frac{15}{16}$B.$\frac{5}{4}$C.-$\frac{15}{16}$D.-$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若命题“?x∈R,2x2+m>4x”是真命题,则m的值可以是.
A.$\frac{3}{2}$B.-1C.1D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b=acosC+3bsin(B+C).
(1)若$\frac{c}{b}=\sqrt{3}$,求角A;
(2)在(1)的条件下,若△ABC的面积为$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\vec a,\vec b,\vec c$,满足$|{\vec a}|=\sqrt{2}$,$|{\bar b}$$|=\vec a•\vec b=3$,若$(\vec c-2\vec a)•(2\vec b-3\vec c)$=0,则$|{\vec b-\vec c}$|的最大值是$\sqrt{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数z=$\frac{5i}{2+i}$的共轭复数是(  )
A.2+iB.2-iC.1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$\overrightarrow{AB}•\overrightarrow{AC}=\overrightarrow{BA}•\overrightarrow{BC},sinA=\frac{{\sqrt{5}}}{3}$.
(Ⅰ)求sinC的值;
(Ⅱ)设D为AC的中点,S△ABC=8$\sqrt{5}$,求中线BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设x,y,z∈[0,1],求证:
(1)x(1-y)+y(1-x)≤1;
(2)x(1-y)+y(1-z)+z(1-x)≤1.

查看答案和解析>>

同步练习册答案