| A. | $\frac{π}{4}$ | B. | $1-\frac{π}{4}$ | C. | $\frac{π}{8}$ | D. | $1-\frac{π}{8}$ |
分析 根据几何概型的概率公式求出对应区域的面积进行求解即可.
解答
解:分别以A,B,C,D为圆心,1为半径的圆,
则所以概率对应的面积为阴影部分,
则四个圆在菱形内的扇形夹角之和为2π,
则对应的四个扇形之和的面积为一个整圆的面积S=π×12=π,
∵S菱形ABCD=AB•BCsin$\frac{π}{6}$=4×4×$\frac{1}{2}$=8,
∴S阴影=S菱形ABCD-S空白=8-π×12=8-π.
因此,该点到四个顶点的距离大于1的概率P=$\frac{{S}_{阴影}}{{S}_{菱形}}$=$\frac{8-π}{8}$=$1-\frac{π}{8}$,
故选:D.
点评 本题主要考查几何概型的概率的计算,根据对应分别求出对应区域的面积是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{15}{16}$ | B. | $\frac{5}{4}$ | C. | -$\frac{15}{16}$ | D. | -$\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | -1 | C. | 1 | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com