精英家教网 > 高中数学 > 题目详情
17.已知正项等比数列{an}中,a2•a5•a13•a16=256,a7=2,则数列{an}的公比为$\sqrt{2}$.

分析 由题意和等比数列的性质可得a94=256,解得a9由通项公式可得公比.

解答 解:∵正项等比数列{an}中,a2•a5•a13•a16=256,
∴a94=a2•a5•a13•a16=256,解得a9=4,
又a7=2,∴数列{an}的公比q=$\sqrt{\frac{{a}_{9}}{{a}_{7}}}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查等比数列的通项公式,涉及等比数列的性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow a$=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),$\overrightarrow b$=(-$\sqrt{3}$,1),$\overrightarrow c$=$\overrightarrow a$+λ$\overrightarrow b$,则$\overrightarrow c$•$\overrightarrow a$等于(  )
A.λB.C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=lnx与g(x)=$\frac{x}{e}$,则它们的图象交点个数为(  )
A.0B.1C.2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义在R上的函数y=f(x)满足f(x-3)=f(x+3)与f(3-x)=f(3+x),x∈[-3,0]时.f(x)=2-x-2,方程f(x)-2log3(2x+3)=0在区间(0,2016)内解的个数是(  )
A.4B.3C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设集合M={x|$\frac{1+x}{3-x}$≥0},N={x|2x≥1},则M∩N=[0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足条件$\left\{\begin{array}{l}{x+2y≥2}\\{x-y≤2}\\{0≤y≤3}\end{array}\right.$,则z=$\frac{1}{2}$x-y的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=2sin2xcosφ+2cos2xsinφ+m(0<φ<$\frac{π}{2}$),且f(x)的图象上的一个最低点为M($\frac{2}{3}π$,-1).
(1)求f(x)的解析式;
(2)已知f($\frac{α}{2}}$)=$\frac{1}{3}$,α∈[0,π],求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,在一块长30m、宽10m的矩形科技园地面上画出三小块全等的矩形做试验田,四周及间隔的观测路的宽度都相等,设计试验田与观测路面的面积之比等于14:11.

(1)求四周及间隔的观测路的宽度;
(2)在三小块全等矩形试验田的周边加设护栏,预计每米长度护栏(高度不变)造价为9元,求护栏总造价.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知MN是单位圆O的直径,A、B是圆O上的两点,且∠AOB=120°,若点C在圆内且满足$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(0<λ<1),则$\overrightarrow{CM}$•$\overrightarrow{CN}$的取值范围是[-$\frac{3}{4}$,0).

查看答案和解析>>

同步练习册答案