精英家教网 > 高中数学 > 题目详情
8.在△ABC中,若C=90°,三边为a,b,c,则$\frac{a+b}{c}$的范围是(  )
A.($\sqrt{2}$,2)B.(1,$\sqrt{2}$]C.(0,$\sqrt{2}$]D.[$\frac{{\sqrt{2}}}{2}$,$\sqrt{2}$]

分析 运用直角三角形的勾股定理和不等式:a2+b2≥2ab>0,当且仅当a=b取得等号,化简整理即可得到取值范围.

解答 解:△ABC是以C为直角顶点的直角三角形,
即有c2=a2+b2
则$\frac{a+b}{c}$=$\frac{a+b}{\sqrt{{a}^{2}+{b}^{2}}}$=$\sqrt{\frac{(a+b)^{2}}{{a}^{2}+{b}^{2}}}$=$\sqrt{1+\frac{2ab}{{a}^{2}+{b}^{2}}}$,
∵a2+b2≥2ab>0,当且仅当a=b取得等号,
即有$\frac{2ab}{{a}^{2}+{b}^{2}}$∈(0,1],
∴$\frac{a+b}{c}$的取值范围为(1,$\sqrt{2}$],
故选:B.

点评 本题着重考查了直角三角形的勾股定理与基本不等式的运用:求最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知直线y=kx+1与椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{m}$=1恒有公共点,则实数m的取值范围为(  )
A.m≥1B.m≥1且m≠1C.m≥1且m≠5D.0<m<5且m≠1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,茎叶图表示甲、乙两个篮球运动员在八场比赛中的得分,其中一个数字被污损,有x表示.
(Ⅰ)若甲、乙两运动员得分的中位数相同,求数字x的值;
(Ⅱ)若x取0,1,2,…,9,十个数字是等可能的,求甲的平均得分不超过乙的平均得分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题中正确的是(  )
①“若x2+y2≠0,则x,y不全为零”;
②“正三角形都相似”的逆命题;
③“若m>0,则x2+x-m=0有实根”的逆否命题;
④在实数范围内,“若x-$\sqrt{2}$是有理数,则x是无理数”的否命题.
A.①②③④B.①③C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}的首项为1,前n项和为Sn,且Sn+1=n2+an+1(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,Tn是数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题P:不等式a2-4a+3<0的解集;命题Q:使(a-2)x2+2(a-2)x-4<0对任意实数x恒成立的实数a,若P∨Q是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某舰艇在A处测得遇险渔船在北偏东45°距离为10海里的C处,此时得知,该渔船沿北偏东105°方向,以每小时9海里的速度向一小岛靠近,舰艇时速21海里,则舰艇到达渔船的最短时间是(  )小时.
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{3}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在复平面内,复数z满足$\overline{z}$=$\frac{|\sqrt{3}+i|}{1+i}$,则z对应点的坐标是(1,1).

查看答案和解析>>

同步练习册答案