精英家教网 > 高中数学 > 题目详情
3.设数列{an}的首项为1,前n项和为Sn,且Sn+1=n2+an+1(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,Tn是数列{bn}的前n项和,求Tn

分析 (1)利用an=Sn-Sn-1化简求解即可.
(2)化简所求通项公式,利用裂项法求解即可.

解答 解:(1)由 ${S_{n+1}}={n^2}+{a_{n+1}}$,-------------------------------①
则 ${S_n}={({n-1})^2}+{a_n}({n≥2})$-------------②
①-②得:${S_{n+1}}-{S_n}={n^2}-{({n-1})^2}+{a_{n+1}}-{a_n}$,即${a_{n+1}}={n^2}-{({n-1})^2}+{a_{n+1}}-{a_n}$,
得an=2n-1(n≥2),
又a1=1也适合上式,∴an=2n-1.  …(6分)
(2)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,…(9分)
∴Tn=b1+b2+…bn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})]$=$\frac{1}{2}(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.                                …(12分)
说明:由${S_{n+1}}={n^2}+{a_{n+1}}$可得${S_n}+{a_{n+1}}={n^2}+{a_{n+1}}$,即${S_n}={n^2}$,亦可求得an=2n-1.

点评 本题考查数列求和,数列的递推关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.直线y=kx+4与圆x2+y2+2kx-2y-2=0交于M,N两点,若点M,N关于直线x+y=0对称,则|MN|等于(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知各项不为0的等差数列{an}的前n项和为Sn,S6+8a7=0,等比数列{bn}的前n项和为Tn,且T2=a2+a3,b3=a3,n∈N*
(1)求$\frac{{S}_{7}}{{a}_{6}}$;
(2)若a2=7,b2>0,求数列{anbn}的前n项和An

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积是(  )
A.42+6$\sqrt{17}$B.30+6$\sqrt{17}$C.66D.44

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等比数列{an}中,若a4a6a8a10a12=32,则$\frac{{{a_{10}}^2}}{{{a_{12}}}}$的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,若C=90°,三边为a,b,c,则$\frac{a+b}{c}$的范围是(  )
A.($\sqrt{2}$,2)B.(1,$\sqrt{2}$]C.(0,$\sqrt{2}$]D.[$\frac{{\sqrt{2}}}{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线l的倾斜角为60°,和直线l平行且经过点(-3,2)的直线方程是(  )
A.y=$\sqrt{3}x+3\sqrt{3}$+2B.y=$\frac{{\sqrt{3}}}{3}x+\sqrt{3}$+2C.y=$\sqrt{3}x-3\sqrt{3}$-2D.y=$\frac{{\sqrt{3}}}{3}x-\sqrt{3}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若a和b是计算机在区间(0,2)上产生的随机数,那么函数f(x)=lg(ax2+4x+4b)的定义域为R(实数集)的概率为(  )
A.$\frac{3-2ln2}{4}$B.$\frac{1+2ln2}{4}$C.$\frac{1+ln2}{2}$D.$\frac{1-ln2}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图某综艺节目现场设有A,B,C,D四个观众席,现有由3不同颜色与2种不同款式组成的6种马甲安排给现场观众,要求每个观众席上的马甲相同,相邻观众席上的马甲的颜色与款式都不相同,则不同的安排方法种数为36.

查看答案和解析>>

同步练习册答案