精英家教网 > 高中数学 > 题目详情
12.若a和b是计算机在区间(0,2)上产生的随机数,那么函数f(x)=lg(ax2+4x+4b)的定义域为R(实数集)的概率为(  )
A.$\frac{3-2ln2}{4}$B.$\frac{1+2ln2}{4}$C.$\frac{1+ln2}{2}$D.$\frac{1-ln2}{2}$

分析 运用函数f(x)=lg(ax2+4x+4b)的值域为R(实数集),求出a,b的范围,再由几何概概型的概率公式,即可得到.

解答 解:由已知,a和b是计算机在区间(0,2)上产生的随机数,对应区域的面积为4,
要函数f(x)=lg(ax2+4x+4b)的定义域为R(实数集),则(ax2+4x+4b)恒为正,
∴△=16-16ab<0,即ab>1;
在平面直角坐标系中画出点(a,b)所在区域:

满足ab>1的区域面积为:${∫}_{\frac{1}{2}}^{2}(2-\frac{1}{x})dx$=3-2ln2;
∴所求概率为P=$\frac{3-2ln2}{4}$;
故选A

点评 本题考查的知识点是几何概型公式的运用,关键是要找出(0,2)上产生两个随机数a和b所对就图形的面积;
几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,且|F1F2|=2,若椭圆C经过点M(0,1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设平行于F1M的直线l(不过椭圆的上下两个顶点)交椭圆C于不同的两点A和B,直线MA和MB的斜率分别为k1,k2,若k1+k2=4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}的首项为1,前n项和为Sn,且Sn+1=n2+an+1(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,Tn是数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知m、n表示两条不同的直线,α、β表示两个不同的平面,且m⊥α,n?β,则“α⊥β”是“m∥n”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某舰艇在A处测得遇险渔船在北偏东45°距离为10海里的C处,此时得知,该渔船沿北偏东105°方向,以每小时9海里的速度向一小岛靠近,舰艇时速21海里,则舰艇到达渔船的最短时间是(  )小时.
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{3}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列说法中一定正确的是(  )
A.若a>b,则$\frac{1}{a}$<$\frac{1}{b}$B.若ac2>bc2,则a>bC.若a>b,则ac>bcD.若a>b,则(${\frac{1}{2}}$)a>(${\frac{1}{2}}$)b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.命题p:直线y=kx+2与圆x2+y2=1相交于A,B两点;命题q:曲线$\frac{{x}^{2}}{16-k}$-$\frac{{y}^{2}}{k}$=1表示焦点在x轴上的双曲线,若p∧q为真命题,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在矩形ABCD中,AB=2,AD=1,在平面内将矩形ABCD绕点B按顺时针方向旋转60°后得到矩形A′BC′D′,则点D′到直线AB的距离是$\sqrt{3}+\frac{1}{2}$.

查看答案和解析>>

同步练习册答案