精英家教网 > 高中数学 > 题目详情
13.直线y=kx+4与圆x2+y2+2kx-2y-2=0交于M,N两点,若点M,N关于直线x+y=0对称,则|MN|等于(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

分析 由题意,得直线x+y=0是线段MN的中垂线,利用垂直直线的经过圆的圆心坐标,即可求出k,利用圆心到直线的距离,半径半弦长,即可求出本题答案.

解答 解:由题意,可得
∵直线y=kx+4与圆x2+y2+2kx-2y-2=0交于M,N两点,若点M,N关于直线x+y=0对称,
∴直线x+y=0是线段MN的中垂线,得k•(-1)=-1,解之得k=1,
所以圆方程为x2+y2+2x-2y-2=0,圆心坐标为(-1,1),半径为2.
圆的圆心到直线y=x+4的距离为:$\frac{|-1-1+4|}{\sqrt{2}}$=$\sqrt{2}$.
|MN|=2$\sqrt{{2}^{2}-{(\sqrt{2})}^{2}}$=2$\sqrt{2}$.
故选:C.

点评 本题给出直线与圆相交,且两个交点关于已知直线对称,求参数k的值.着重考查了直线的斜率、圆的方程和直线与圆的位置关系等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设x>0,则x+$\frac{4}{x}$的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=-2cos2x-2$\sqrt{2}$sinx+2的定义域为R,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.抛物线y=$\frac{1}{8}{x^2}$上到焦点的距离等于6的点的坐标为(4$\sqrt{2}$,4)或(-4$\sqrt{2}$,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,其短轴的一个端点到它的左焦点距离为2,直线l:y=kx与椭圆C交于M,N两点,P为椭圆C上异于M,N的点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线PM,PN的斜率都存在,判断PM,PN的斜率之积是否为定值?若是,求出此定值,若不是,请说明理由;
(Ⅲ)求△PMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知直线y=kx+1与椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{m}$=1恒有公共点,则实数m的取值范围为(  )
A.m≥1B.m≥1且m≠1C.m≥1且m≠5D.0<m<5且m≠1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆G:$\frac{x^2}{a^2}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,右焦点为(2$\sqrt{2}$,0),过原点O的直线l交椭圆于A,B两点,线段AB的垂直平分线交椭圆G于点M.
(Ⅰ)求椭圆G的方程;
(Ⅱ)求证:$\frac{1}{{{{|{OA}|}^2}}}$+$\frac{1}{{{{|{OM}|}^2}}}$为定值,并求△AOM面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,且|F1F2|=2,若椭圆C经过点M(0,1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设平行于F1M的直线l(不过椭圆的上下两个顶点)交椭圆C于不同的两点A和B,直线MA和MB的斜率分别为k1,k2,若k1+k2=4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}的首项为1,前n项和为Sn,且Sn+1=n2+an+1(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,Tn是数列{bn}的前n项和,求Tn

查看答案和解析>>

同步练习册答案