精英家教网 > 高中数学 > 题目详情
16.$\frac{sin(π-α)}{sin(-α)}$+$\frac{cos(π+α)}{cos(π-α)}$+$\frac{tan(π-α)}{tan(-α)}$+$\frac{cot(-α)}{cot(π+α)}$=(  )
A.2B.-2C.4D.0

分析 使用诱导公式化简即可.

解答 解:原式=$\frac{sinα}{-sinα}$+$\frac{-cosα}{-cosα}$+$\frac{-tanα}{-tanα}$+$\frac{-cotα}{cotα}$=-1+1+1-1=0.
故选:D.

点评 本题考查了利用诱导公式化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若$\frac{5π}{2}$<α<3π,则$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cosα}}$等于(  )
A.cos$\frac{α}{4}$B.-cos$\frac{α}{4}$C.sin$\frac{α}{4}$D.-sin$\frac{α}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=4sin(2x+$\frac{π}{6}$),x∈R,则下列命题正确的是(  )
A.f(x)在区间[0,$\frac{π}{2}$]内是增函数
B.若?x1≠x2,f(x1)=f(x2)=0,则x1-x2必是π的整数倍
C.f(x)的图象关于点(-$\frac{π}{12}$+$\frac{kπ}{2}$,0)(k∈Z)对称
D.f(x)的图象关于直线x=$\frac{π}{12}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数a、b、c满足$\frac{\sqrt{5}b-c}{5a}$=$\frac{1}{4}$,那么关于b2与ac的大小关系的判断:①b2>ac,②b2=ac,③b2<ac,其中所有可能成立的是(  )
A.B.①②C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.求值:
sin$\frac{5π}{6}$-cos$\frac{π}{3}$+cot$\frac{5π}{4}$+tan(-$\frac{π}{4}$)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数y=xln(x+$\sqrt{1+{x}^{2}}$),求dy.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.根据数列的前几项,写出下列各数列的一个通项公式.
(1)-1,7,-13,19,…;
(2)$\frac{1}{2}$,2,$\frac{9}{2}$,8,$\frac{25}{2}$,…;
(3)0.8,0.88,0.888,…;
(4)$\frac{1}{2}$,$\frac{1}{4}$,-$\frac{5}{8}$,$\frac{13}{16}$,-$\frac{29}{32}$,$\frac{61}{64}$,…;
(5)$\frac{3}{2}$,1,$\frac{7}{10}$,$\frac{9}{17}$,….

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,若|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=2,∠BAC=60°,则$\overrightarrow{BA}$•$\overrightarrow{AC}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知F1,F2为椭圆$\frac{{x}^{2}}{2}$+y2=1的左、右焦点,A为下顶点,连接AF2并延长交椭圆于点B,则BF1长为$\frac{5\sqrt{2}}{3}$.

查看答案和解析>>

同步练习册答案