精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=4sin(2x+$\frac{π}{6}$),x∈R,则下列命题正确的是(  )
A.f(x)在区间[0,$\frac{π}{2}$]内是增函数
B.若?x1≠x2,f(x1)=f(x2)=0,则x1-x2必是π的整数倍
C.f(x)的图象关于点(-$\frac{π}{12}$+$\frac{kπ}{2}$,0)(k∈Z)对称
D.f(x)的图象关于直线x=$\frac{π}{12}$对称

分析 由条件利用正弦函数的图象和性质,得出结论.

解答 解:对于函数f(x)=4sin(2x+$\frac{π}{6}$),x∈R,在区间[0,$\frac{π}{2}$]内,2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],故函数f(x)没有单调性,故排除A.
函数f(x)=4sin(2x+$\frac{π}{6}$)的周期为$\frac{2π}{2}$=π,若?x1≠x2,f(x1)=f(x2)=0,则x1-x2必是$\frac{π}{2}$的整数倍,故B错误.
由于当x=-$\frac{π}{12}$+$\frac{kπ}{2}$时,f(x)=0,故f(x)的图象关于点(-$\frac{π}{12}$+$\frac{kπ}{2}$,0)(k∈Z)对称,故C正确.
由于当x=$\frac{π}{12}$时,f(x)=2$\sqrt{3}$,不是函数的最值,故f(x)的图象不关于直线x=$\frac{π}{12}$对称,故D错误,
故选:C.

点评 本题主要考查正弦函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.比较${∫}_{0}^{3}$$\sqrt{5-\frac{5}{9}{x}^{2}}$dx与${∫}_{0}^{3}$$\sqrt{3-\frac{1}{3}{x}^{2}}$dx的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是分别与x轴、y轴同方向的单位向量,向量$\overrightarrow{OA}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{OB}$=5$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,将有向线段$\overrightarrow{AB}$绕点A旋转到$\overrightarrow{AC}$位置,使得$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,则$\overrightarrow{OB}$•$\overrightarrow{OC}$的值是6或10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)等差数列{an}中,a5=11,a8=5,求该数列的通项公式;
(2)已知等差数列{an}中,a1=2,a2和a3是两个连续正整数的平方,求该数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.用计算器求下列各三角函数的值(精确到0.001).
(1)sin$\frac{3π}{7}$;
(2)tan6.3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.定圆C:(x-3)2+(y-3)2=($\frac{5}{2}$)2上有动点P,它关于定点A(7,0)的对称点为Q,点P绕圆心C依逆时针方向旋转120°后到达点R.求线段RQ长度的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=log2$\frac{2x^2}{x^2+1}$(x>0),若函数g(x)=f(x)2+m$|\begin{array}{l}{f(x)}\end{array}|$+2m+3有三个不同的零点,则实数m的最大值为(  )
A.$\frac{4}{3}$B.-$\frac{4}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.$\frac{sin(π-α)}{sin(-α)}$+$\frac{cos(π+α)}{cos(π-α)}$+$\frac{tan(π-α)}{tan(-α)}$+$\frac{cot(-α)}{cot(π+α)}$=(  )
A.2B.-2C.4D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某台机床加工的1000只产品中次品数的频率分布如表:
次品数01234
频率0.50.20.050.20.05
则次品平数的众数,平均数依次为(  )
A.0,1.1B.0,1C.4,1D.0.5,2

查看答案和解析>>

同步练习册答案