精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=log2$\frac{2x^2}{x^2+1}$(x>0),若函数g(x)=f(x)2+m$|\begin{array}{l}{f(x)}\end{array}|$+2m+3有三个不同的零点,则实数m的最大值为(  )
A.$\frac{4}{3}$B.-$\frac{4}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

分析 先判断函数f(x)的单调性和取值范围,利用换元法,设|f(x)|=t,则函数g(x)=f(x)2+m$|\begin{array}{l}{f(x)}\end{array}|$+2m+3有三个不同的零点转化为对应方程有三个不同的实数解,即为t2+mt+2m+3=0有两个根,且一个在(0,1)上,一个在[1,+∞)上,由此可得结论.利用根的分布进行求解即可.

解答 解:∵$\frac{2x^2}{x^2+1}$=$\frac{2({x}^{2}+1)-2}{{x}^{2}+1}$=2-$\frac{2}{{x}^{2}+1}$,
∴当x>0时y=$\frac{2x^2}{x^2+1}$为增函数,且y=$\frac{2x^2}{x^2+1}$∈(0,2),
则f(x)为增函数,且f(x)∈(-∞,1),
设t=f(x),则t<1,
则函数g(x)=f(x)2+m$|\begin{array}{l}{f(x)}\end{array}|$+2m+3有三个不同的零点,等价为y=t2+m|t|+2m+3在t<1时有三个不同的零点,
y=|f(x)|大致图象如图所示,
即方程|t|2+m|t|+2m+3=0有三个不同的实数解,即为t2+mt+2m+3=0有两个根,且一个在(0,1)上,一个在[1,+∞)上,
设h(t)=t2+mt+2m+3,
①当有一个根为1时,h(1)=12+m+2m+3=0,$m=-\frac{4}{3}$,此时另一根为$\frac{1}{3}$适合题意; 
②当没有根为1时,$\left\{\begin{array}{l}h(0)>0\\ h(1)<0\end{array}\right.$,得$\left\{\begin{array}{l}2m+3>0\\{1^2}+m+2m+3<0\end{array}\right.$,
∴$-\frac{3}{2}<m<-\frac{4}{3}$,
综上-$\frac{3}{2}$<m≤-$\frac{4}{3}$;
∴实数m的最大值为的取值范围为-$\frac{4}{3}$;
故选:B.

点评 本题考查了复合函数的应用及方程的根与函数的零点的关系应用,考查运算能力,利用数形结合以及换元法和转化法是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设M,N是抛物线C:y2=2px(p>0)上任意两点,点E的坐标为(-λ,0)(λ≥0),若$\overrightarrow{EM}$$•\overrightarrow{EN}$的最小值为0,则λ=$\frac{1}{2}$p.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在Rt△ABC中,∠A为直角,且AB=3,BC=5,若在三角形ABC内任取一点,则该点到三个定点A,B,C的距离不小于1的概率是(  )
A.$\frac{π}{6}$B.1-$\frac{π}{6}$C.$\frac{π}{12}$D.1-$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=4sin(2x+$\frac{π}{6}$),x∈R,则下列命题正确的是(  )
A.f(x)在区间[0,$\frac{π}{2}$]内是增函数
B.若?x1≠x2,f(x1)=f(x2)=0,则x1-x2必是π的整数倍
C.f(x)的图象关于点(-$\frac{π}{12}$+$\frac{kπ}{2}$,0)(k∈Z)对称
D.f(x)的图象关于直线x=$\frac{π}{12}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解不等式$\frac{(x+4a)(x-6a)}{2a+1}$>0(a为常数,a≠-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数a、b、c满足$\frac{\sqrt{5}b-c}{5a}$=$\frac{1}{4}$,那么关于b2与ac的大小关系的判断:①b2>ac,②b2=ac,③b2<ac,其中所有可能成立的是(  )
A.B.①②C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.求值:
sin$\frac{5π}{6}$-cos$\frac{π}{3}$+cot$\frac{5π}{4}$+tan(-$\frac{π}{4}$)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.根据数列的前几项,写出下列各数列的一个通项公式.
(1)-1,7,-13,19,…;
(2)$\frac{1}{2}$,2,$\frac{9}{2}$,8,$\frac{25}{2}$,…;
(3)0.8,0.88,0.888,…;
(4)$\frac{1}{2}$,$\frac{1}{4}$,-$\frac{5}{8}$,$\frac{13}{16}$,-$\frac{29}{32}$,$\frac{61}{64}$,…;
(5)$\frac{3}{2}$,1,$\frac{7}{10}$,$\frac{9}{17}$,….

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(重点中学做)已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(3,1),离心率e=$\frac{\sqrt{6}}{3}$
(1)求椭圆C的方程;
(2)分别过椭圆C的四个顶点作坐标轴的垂线,围成如图所示的矩形,A,B是所围成的矩形在x轴上方的两个顶点.若P,Q是椭圆C上两个动点,直线OP、OQ与椭圆的另一交点分别为P1、Q1,且直线OP、OQ的斜率之积等于直线OA、0B的斜率之积,试问四边形PQP1Q1的面积是否为定值?若为定值,求出其值;若不为定值,说明理由(0为坐标原点).

查看答案和解析>>

同步练习册答案