精英家教网 > 高中数学 > 题目详情
5.函数y=$\frac{1}{2}sin2x+{sin^2}$x,x∈R的递减区间为(  )
A.$[{kπ-\frac{π}{8},kπ+\frac{π}{8}}],k∈Z$B.$[{\frac{kπ}{2}-\frac{π}{8},\frac{kπ}{2}+\frac{π}{8}}],k∈Z$
C.$[{kπ+\frac{3π}{8},kπ+\frac{7π}{8}}],k∈Z$D.$[{\frac{kπ}{2}+\frac{3π}{8},\frac{kπ}{2}+\frac{7π}{8}}],k∈Z$

分析 利用三角恒等变换化简函数的解析式,再根据正弦函数的减区间,求得所给函数的减区间.

解答 解:函数y=$\frac{1}{2}sin2x+{sin^2}$x=$\frac{1}{2}$sin2x+$\frac{1}{2}$-$\frac{1}{2}$cos2x=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$)+$\frac{1}{2}$,
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{3π}{8}$≤x≤kπ+$\frac{7π}{8}$,故函数的减区间为[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z,
故选:C.

点评 本题主要考查三角恒等变换,正弦函数的减区间,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.抛物线x2=-4y的焦点到准线的距离为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn,向量$\overrightarrow{a}$=(Sn,1),$\overrightarrow{b}$=(2n-1,$\frac{1}{2}$),满足条件$\overrightarrow{a}$∥$\overrightarrow{b}$
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设函数f(x)=($\frac{1}{2}$)x,数列{bn}满足条件b1=2,f(bn+1)=$\frac{1}{f(-3-{b}_{n})}$,(n∈N*)
(i)求数列{bn}的通项公式;
(ii)设cn=$\frac{{b}_{n}}{{a}_{n}}$,数列{cn}的前n项和Tn,求证1≤Tn<5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若关于x的不等式ax2+bx-1>0的解集为$(\frac{1}{3},\frac{1}{2})$.
(1)求a,b;
(2)求两平行线l1:3x+4y+a=0,l2:3x+4y+b=0之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知圆M:(x-1)2+y2=$\frac{3}{8}$,椭圆C:$\frac{{x}^{2}}{3}$+y2=1,若直线l与椭圆交于A,B两点,与圆M相切于点P,且P为AB的中点,则这样的直线l有(  )
A.2条B.3条C.4条D.6条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.把下列各角度化成弧度:
(1)36°;(2)-150°;(3)1095°;(4)1440°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.不等式|x-1|+|x+3|≥6的解集是(-∞,-4]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}的前n项和为Sn,a1=1,a2=2且Sn+2-3Sn+1+2Sn+an=0,(n∈N*),记Tn=$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n},(n∈{N^*})$,若(n+6)λ≥Tn对n∈N*恒成立,则λ的最小值为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,有6种不同颜色的涂料可供涂色,每个顶点只能涂一种颜色的涂料,其中A和C1同色、B和D1同色,C和A1同色,D和B1同色,且图中每条线段的两个端点涂不同颜色,则涂色方法有(  )
A.720种B.360种C.120种D.60种

查看答案和解析>>

同步练习册答案