精英家教网 > 高中数学 > 题目详情
3.若函数f(x)=ax2+20x+14(a>0)对任意实数t,在闭区间[t-1,t+1]上总存在两实数x1、x2,使得|f(x1)-f(x2)|≥8成立,则实数a的取值范围是[8,+∞).

分析 结合二次函数的图象可知,当且仅当区间[t-1,t+1]的中点是对称轴时,只要满足[t-1,t+1]上总存在两实数x1,x2,使得|f(x1)-f(x2)|≥8成立,则对其它任何情况必成立.

解答 解:因为a>0,所以二次函数f(x)=ax2+20x+14的图象开口向上.

在闭区间[t-1,t+1]上总存在两实数x1,x2,使得|f(x1)-f(x2)|≥8成立,
只需t=-$\frac{10}{a}$时,f(t+1)-f(t)≥8,
即a(t+1)2+20(t+1)+14-(at2+20t+14)≥8,
即2at+a+20≥8,将t=-$\frac{10}{a}$代入得a≥8,
故答案为[8,+∞).

点评 本题考查了利用函数的最值研究恒成立问题的思路,同时结合函数图象分析问题是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知F1,F2是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,直线y=a与双曲线两条渐近线的左、右交点分别为A,B,若四边形ABF2F1的面积为5ab,则双曲线的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示,当输入a,b分别为2,3时,最后输出的m的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.观察这列数:1,2,3,3,2,1,2,3,4,4,3,2,3,4,5,5,4,3,4,5,6,6,5,4,…,则第2016个数是(  )
A.335B.336C.337D.338

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合M={x|0≤x<1},集合N={x|x2-2x-3≥0},则集合M∩(∁RN)=(  )
A.{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x≤1}D.{x|0≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a=0.6${\;}^{\frac{1}{2}}$,b=0.5${\;}^{\frac{1}{4}}$,c=lg0.4,则(  )
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(Ⅰ)写出函数f(x)的最小正周期T及ω、φ的值;
(Ⅱ)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{12}$个单位后的图象关于y轴对称,则函数f(x)在[0,$\frac{π}{4}$]上的最大值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,矩形ABCD中AD边的长为1,AB边的长为2,矩形ABCD位于第一象限,且顶点A,D分别位于x轴、y轴的正半轴上(含原点)滑动,则$\overrightarrow{OB}•\overrightarrow{OC}$的最大值是6.

查看答案和解析>>

同步练习册答案