| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
分析 由函数图象变换以及诱导公式和偶函数可得φ值,可得函数解析式,由三角函数区间的最值可得.
解答 解:将函数f(x)=sin(2x+φ)的图象向右平移$\frac{π}{12}$个单位后得到y=sin[2(x-$\frac{π}{12}$)+φ)]=sin(2x+φ-$\frac{π}{6}$)的图象,
∵图象关于y轴对称,∴由诱导公式和偶函数可得φ-$\frac{π}{6}$=kπ+$\frac{π}{2}$,解得φ=kπ+$\frac{2π}{3}$,k∈Z,
由|φ|<$\frac{π}{2}$,可得当k=-1时,φ=-$\frac{π}{3}$,
故f(x)=sin(2x-$\frac{π}{3}$),
由x∈[0,$\frac{π}{4}$],可得:2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{π}{6}$],
∴当2x-$\frac{π}{3}$=$\frac{π}{6}$,即x=$\frac{π}{4}$时,函数f(x)在[0,$\frac{π}{4}$]上取最大值sin(2×$\frac{π}{4}$-$\frac{π}{3}$)=$\frac{1}{2}$,
故选:B.
点评 本题考查正弦函数图象,涉及函数图象变换和函数的奇偶性以及最值,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (1,3) | C. | (-1,2) | D. | (-1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∉R,x2不是无理数 | B. | ?x∈R,x2不是无理数 | ||
| C. | ?x∉R,x2不是无理数 | D. | ?x∈R,x2不是无理数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{\sqrt{5}}}{5}i$ | C. | 1 | D. | i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com