精英家教网 > 高中数学 > 题目详情
已知数列{an},{bn}分别满足a1a2…an=n(n-1)…2•1,b1+b2+…+bn=an2
(1)求数列{an},{bn}的通项公式;
(2)若数列{
1
bnbn+1
}的前n项和为Sn,若对任意x∈R,anSn>-x2-2x+9恒成立,求自然数n的最小值.
考点:数列的求和,数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由a1a2…an=n(n-1)…2•1,得a1a2…an-1=(n-1)(n-2)…2•1,n≥2,两式相除得an=n;由b1+b2+…+bn=an2=n2,得b1+b2+…+bn-1=(n-1)2,两式相减得bn=2n-1.
(2)由
1
bnbn+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,利用裂项求和法能求出对任意x∈R,anSn>-x2-2x+9恒成立的自然数n的最小值.
解答: 解:(1)由a1a2…an=n(n-1)…2•1,
得a1a2…an-1=(n-1)(n-2)…2•1,n≥2,
两式相除得an=n,n≥2,又n=1时,a1=1,满足上式,
∴an=n.…(3分)
由b1+b2+…+bn=an2=n2,得b1+b2+…+bn-1=(n-1)2
∴bn=n2-(n-1)2=2n-1,(n≥2),
又b1=1,故bn=2n-1.…(7分)
(2)∵
1
bnbn+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

∴Sn=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
2n-1
-
1
2n+1
)

=
1
2
(1-
1
2n+1
)

=
n
2n+1

∴nSn=
n2
2n+1
,而g(x)=-x2-2x+9的最大值为10,
f(n)=
n2
2n+1
>10恒成立即可,
n2>10(2n+1),
∴n2-20n-10>0,解得n≥21,
∴n的最小值为21.…(14分)
点评:本题考查数列的通项公式的求法,考查满足条件的自然数的最小值的求法,是中档题,解题时要注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设单位向量
a
b
与非零向量
c
满足
a
b
=
1
2
,向量
a
-
c
与向量
b
-
c
的夹角为90°,则|
c
|的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1-x
+
1+x
的最大值是
 
;最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x
1+x
(x>0),数列{an}和{bn}满足:a1=
1
2
,an+1=f(an),函数y=f(x)的图象在点(n,f(n))(n∈N*)处的切线在y轴上的截距为bn
(1)求数列{an}的通项公式;
(2)若数列{
bn
an2
-
λ
an
}的项中仅
b5
a52
-
λ
a5
最小,求λ的取值范围;
(3)若函数g(x)=
x
1-x
,令函数h(x)=[f(x)+g(x)]•
1-x2
1+x2
,0<x<1,数列{xn}满足:x1=
1
2
,0<xn<1且xn+1=h(xn)其中n∈N*.证明:
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+…
(xn+1-xn)2
xnxn+1
2
+1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

过圆内一点的最长弦与最短弦所在直线方程分别为(a+1)x+(2a-1)y+a+8=0与ax-2y+4=0,则实数a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:函数f(x)=x2-2ax+3在区间(4,+∞)上单调递增;q:loga2<1.如果“非p”是真命题,“p或q”也是真命题,那么实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x
+alnx,其中a为实常数.
(1)求f(x)的极值;
(2)若对任意x1,x2∈[1,3],且x1<x2,恒有
1
x1
-
1
x2
>|f(x1)-f(x2)|成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知图中(1)、(2)、(3)分别是一个立体模型的正视图、左视图、俯视图,这个立体模型由若干个棱长为1的小正方体组成,则这个立体模型的体积的所有可能值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题:
①“所有能被2整除的整数都是偶数”的否定是“所有能被2整除的整数不都是偶数”;
②“菱形的两条对角线互相垂直”的逆命题;
③“a,b,c∈R,若a>b,则a+c>b+c”的逆否命题;
④“若a+b≠3,则a≠1或b≠2”的否命题. 
上述命题中真命题的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案