精英家教网 > 高中数学 > 题目详情
化简复数z=
1
1-i
为(  )
A、
1
2
+
1
2
i
B、
1
2
-
1
2
i
C、1-i
D、1+i
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:利用复数的运算法则即可得出.
解答: 解:复数z=
1
1-i
=
1+i
(1-i)(1+i)
=
1
2
+
1
2
i

故选:A
点评:本题考查了复数的运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果
a
b
是两个单位向量,下列四个结论中正确的是(  )
A、
a
=
b
B、
a
b
=1
C、
a
2
b
2
D、|
a
|2=|
b
|2

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,若a2+a4+a9+a11=32,则a6+a7=(  )
A、9B、12C、15D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线 y2=4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点,如果x1+x2=10,那么|AB|=(  )
A、11B、12C、13D、14

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(2,2]上的函数f(x)满足f(x+2)=
4
f(x)+2
,当x∈[0,2],f(x)=x,若g(x)=f(x)-mx-m有两个不同零点,则实数m的取值范围是(  )
A、0<m≤
2
3
或-6-4
2
<m<0
B、0<m≤
2
3
或m<-6+4
2
C、0<m≤
2
3
或m<-6-4
2
D、0<m≤
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中为真命题的是(  )
A、若m<1,则方程x2-2x+m=0无实数根
B、“矩形的两条对角线相等”的逆命题
C、“若x2+y2=0,则x,y全为0”的否命题
D、“若a<b,则am2<bm2”的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:

i是虚数单位,复数z=
2+3i
i
的虚部是(  )
A、-2iB、iC、1D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

编写程序框图计算:12-22+32-42+…+992-1002

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)若存在x0∈[
1
e
,e](e是自然对数的底数,e=2.71828…),使不等式2f(x0)≥g(x0)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案