【题目】绿色已成为当今世界主题,绿色动力已成为时代的驱动力,绿色能源是未来新能源行业的主导.某汽车公司顺应时代潮流,最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行分析,得到如图所示的频率分布直方图.
(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表);
(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程近似地服从正态分布,经计算第(1)问中样本标准差的近似值为50.用样本平均数作为的近似值,用样本标准差作为的估计值;
(ⅰ)现从该汽车公司最新研发的新能源汽车中任取一辆汽车,求它的单次最大续航里程恰好在200千米到350千米之间的概率;
(ⅱ)从该汽车公司最新研发的新能源汽车中随机抽取10辆,设这10辆汽车中单次最大续航里程恰好在200千米到350千米之间的数量为,求;
(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知硬币出现正、反面的概率都是,方格图上标有第0格、第1格、第2格、…、第50格.遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次,若掷出正面,遥控车向前移动一格(从到),若掷出反面,遥控车向前移动两格(从到),直到遥控车移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束.设遥控车移到第格的概率为,其中,试说明是等比数列,并解释此方案能否成功吸引顾客购买该款新能源汽车.
参考数据:若随机变量服从正态分布,则,,.
【答案】(1)300;(2)(i);(ii);(3)见解析,此方案能成功吸引顾客购买该款新能源汽车.
【解析】
(1)利用频率分布直方图的平均数的计算方法即可得出.
(2)(ⅰ)由,.利用正态分布的对称性可得.
(ⅱ)依题意有,再利用二项分布的期望公式计算可得;
(3)遥控车开始在第0 格为必然事件,.第一次掷硬币出现正面,遥控车移到第一格,其概率为,即.遥控车移到第格的情况是下面两种,而且只有两种:①遥控车先到第格,又掷出反面,其概率为.②遥控车先到第格,又掷出正面,其概率为.可得:.变形为.即可证明时,数列是等比数列,首项为,公比为的等比数列.利用,及其求和公式即可得出.可得获胜的概率,失败的概率.进而得出结论.
(1)(千米).
(2)(i)由.
.
(ⅱ)依题意有,所以.
(3)第一次掷硬币出现正面,遥控车移到第一格,其概率为,即.
遥控车移到第格的情况是下面两种,而且只有两种;
①遥控车先到第格,又掷出反面,其概率为.
②遥控车先到第格,又掷出正面,其概率为.
,.
时,数列是等比数列,首项为,公比为的等比数列.
,,,…,.
.
∴获胜的概率,
失败的概率.
.
∴获胜的概率大.
∴此方案能成功吸引顾客购买该款新能源汽车.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,∠BAD=60°,AB=PA=4,E是PA的中点,AC,BD交于点O.
(1)求证:OE∥平面PBC;
(2)求三棱锥E﹣PBD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:
组别 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 10 | 7 | 13 |
(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.
①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;
②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:
红包金额(单位:元) | 10 | 20 |
概率 |
现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,底面为菱形, , , 与相交于点,四边形为直角梯形, , , ,平面底面.
(1)证明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)若函数在上递减,在上递增,求实数的值.
(2)若函数在定义域上不单调,求实数的取值范围.
(3)若方程有两个不等实数根,求实数的取值范围,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com