精英家教网 > 高中数学 > 题目详情

如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交于BC于点E,AB=2AC.

(Ⅰ)求证:BE=2AD;
(Ⅱ)当AC=1,EC=2时,求AD的长.

(Ⅰ)详见解析;(Ⅱ).

解析试题分析:(Ⅰ)要证明,注意到的平分线,等角对等弦,可连接,则,可证,又因为,可证即可,由圆内接四边形的性质可证;(Ⅱ)根据割线定理,建立的方程,解出即可.
试题解析:(Ⅰ)连接,因为是圆的内接四边形,所以,又,所以,即有,又,所以,又的平分线,
所以,从而.

(Ⅱ)由条件的,根据割线定理得,即,所以
解得,或(舍去),即
考点:本小题考查割线定理,相似三角形,等角对等弦,圆内接四边形,考查分析问题、解决问题的能力,及推理论证能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知Rt△ABC的周长为48 cm,一锐角平分线分对边为3∶5两部分.

(1)求直角三角形的三边长;
(2)求两直角边在斜边上的射影的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,的一条切线,切点为都是的割线,已知

(1)证明:
(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为△外接圆的切线,的延长线交直线于点,分别为弦与弦上的点,且,四点共圆.

(Ⅰ)证明:是△外接圆的直径;
(Ⅱ)若,求过四点的圆的面积与△外接圆面积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知与圆相切于点,直径 ,连结于点.

(1)求证:
(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的半径,且是半径上一点:延长交圆于点,过作圆的切线交的延长线于点.求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线为圆的切线,切点为,直径,连接于点.

(Ⅰ)证明:
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是圆O的直径,C,D是圆O上两点,AC与BD相交于点E,GC,GD是圆O的切线,点F在DG的延长线上,且。求证:
(Ⅰ)D、E、C、F四点共圆;       (Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四点共圆,的延长线交于点,点的延长线上.

(1)若,求的值;
(2)若,求证:线段成等比数列.

查看答案和解析>>

同步练习册答案