精英家教网 > 高中数学 > 题目详情

如图,AB是圆O的直径,C,D是圆O上两点,AC与BD相交于点E,GC,GD是圆O的切线,点F在DG的延长线上,且。求证:
(Ⅰ)D、E、C、F四点共圆;       (Ⅱ)

(Ⅰ)详见解析;(Ⅱ)详见解析.

解析试题分析:(Ⅰ)依据已知条件寻求出∠DGC、∠F、∠CAB+∠DBA的关系,借助对角互补证明D,E,C,F四点共圆;(Ⅱ)结合(Ⅰ)的结果进一步得到点G是经过D,E,C,F四点的圆的圆心,所以∠GCE=∠GEC,延长GE,继而证明∠AEH+∠CAB=90°即可.
试题解析:(Ⅰ)如图,连结OC,OD,则OC⊥CG,OD⊥DG,
设∠CAB=∠1,∠DBA=∠2,∠ACO=∠3,
则∠COB=2∠1,∠DOA=2∠2.
所以∠DGC=180°-∠DOC=2(∠1+∠2).
因为∠DGC=2∠F,所以∠F=∠1+∠2.
又因为∠DEC=∠AEB=180°-(∠1+∠2),
所以∠DEC+∠F=180°,所以D,E,C,F四点共圆.

(Ⅱ)延长GE交AB于H.
因为GD=GC=GF,所以点G是经过D,E,C,F四点的圆的圆心.
所以GE=GC,所以∠GCE=∠GEC.        
又因为∠GCE+∠3=90°,∠1=∠3,
所以∠GEC+∠3=90°,所以∠AEH+∠1=90°,
所以∠EHA=90°,即GE⊥AB. 
考点:1、四点共圆;2、圆的切线的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知为半圆的直径,为半圆上一点,过点作半圆的切线,过点,交圆于点

(Ⅰ)求证:平分
(Ⅱ)求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交于BC于点E,AB=2AC.

(Ⅰ)求证:BE=2AD;
(Ⅱ)当AC=1,EC=2时,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,的直径,弦垂直,并与相交于点,点为弦上异于点的任意一点,连结并延长交于点.
⑴ 求证:四点共圆;
⑵ 求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:如图,点上,平分,交于点.求证:为等腰直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的内接四边形,,过点的圆的切线与的延长线交于点,证明:
(Ⅰ)
(II)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知均在⊙O上,且为⊙O的直径。
(Ⅰ)求的值;
(Ⅱ)若⊙O的半径为交于点,且
为弧的三等分点,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D。

(1)求证:
(2)若AC=3,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4-1:几何证明讲 如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.

求证:(1)
(2)AB2=BE•BD-AE•AC.

查看答案和解析>>

同步练习册答案