精英家教网 > 高中数学 > 题目详情

如图,已知均在⊙O上,且为⊙O的直径。
(Ⅰ)求的值;
(Ⅱ)若⊙O的半径为交于点,且
为弧的三等分点,求的长.

    

解析试题分析(Ⅰ)注意利用圆心角与圆周角间的关系, (Ⅱ)先求出角再解直角三角形.
试题解析:(Ⅰ)连接,则


.                  5分
(Ⅱ)连接,因为为⊙O的直径,
所以,又的三等分点,所以
. 7分
所以.因为⊙O的半径为,即,所以.
中,.
.                                        10分
考点:圆的性质及应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,的一条切线,切点为都是的割线,已知

(1)证明:
(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线为圆的切线,切点为,直径,连接于点.

(Ⅰ)证明:
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是圆O的直径,C,D是圆O上两点,AC与BD相交于点E,GC,GD是圆O的切线,点F在DG的延长线上,且。求证:
(Ⅰ)D、E、C、F四点共圆;       (Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

几何证明选讲.
如图,直线过圆心,交⊙,直线交⊙ (不与重合),直线与⊙相切于,交,且与垂直,垂足为,连结.

求证:(1);      
(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是⊙O的直径,C、E为⊙O上的点,CA平分∠BAE,CF⊥AB, F是垂足,CD⊥AE,交AE延长线于D.

(I)求证:DC是⊙O的切线;
(Ⅱ)求证:AF.FB=DE.DA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB与弦AC上的点,
且BCAE=DCAF,B、E、F、C四点共圆.

(Ⅰ)证明:CA是△ABC外接圆的直径;
(Ⅱ)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.                       

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四点共圆,的延长线交于点,点的延长线上.

(1)若,求的值;
(2)若,求证:线段成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
如图,已知的切线,为切点,的割线,与交于两点,圆心的内部,点的中点.

(1)证明四点共圆;
(2)求的大小.

查看答案和解析>>

同步练习册答案