精英家教网 > 高中数学 > 题目详情
9.给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如图所示,由此推断,当n=6时,至少有两个黑色正方形相邻的着色方案共有(  )种.
A.21B.32C.43D.54

分析 根据所给的涂色的方案,观测相互之间的方法数,得到规律,根据这个规律写出当n取不同值时的结果数;利用给小正方形涂色的所有法数减去黑色正方形互不相邻的着色方案,得到结果.

解答 解:设n个正方形时黑色正方形互不相邻的着色方案数为an
由图形知:
a1=2,
a2=3,
a3=5=2+3=a1+a2
a4=8=3+5=a2+a3
由此推断a5=a3+a4=5+8=13,
a6=a4+a5=8+13=21,
故黑色正方形互不相邻着色方案共有21种;
由于给6个正方形着黑色或白色,每一个小正方形有2种方法,
所以一共有2×2×2×2×2×2=26=64种方法,
由于黑色正方形互不相邻着色方案共有21种,
所以至少有两个黑色正方形相邻着色方案共有64-21=43种着色方案.
故选:C.

点评 本题考查简单的排列组合及简单应用,考查观察规律,找出结果的过程,是一个比较麻烦的题目,作为高考题目比前几年的排列组合问题相对简单点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设f(x)=|x-1|+|x+1|,(x∈R)
(1)求证:f(x)≥2;
(2)若不等式f(x)≥$\frac{|2b+1|-|1-b|}{|b|}$对任意非零实数b恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知关于x的不等式|mx-2|+|mx+m|≥5.
(1)当m=1时,求此不等式的解集;
(2)若此不等式的解集为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.不等式|x-1|+|2x-1|≤5的解集为(  )
A.[-1,$\frac{1}{2}$)B.[-1,1]C.($\frac{1}{2}$,1]D.[-1,$\frac{7}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.图中的三角形称为希尔宾斯基(Sierpinski)三角形.黑色的三角形个数依次构成一个数列,则这个数列的一个通项公式是(  )
A.an=3n-1B.an=3nC.an=3n-2nD.an=3n-1+2n-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在区间[-π,2π]上的函数y=sin2x的图象与y=cosx的图象交点的横坐标之和等于$\frac{5π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=a,曲线C参数方程为$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),已知C与l有且只有一个公共点.
(Ⅰ)求a的值;
(Ⅱ)过P点作平行于l的直线交C于A,B两点,且|PA|•|PB|=3,求点P轨迹的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2+ax+1(a∈R).
(1)若f(x)在[0,2]上的最小值为1,求实数a的取值范围;
(2)解关于x的不等式f(x)≥0;
(3)若关于x的方程f(f(x)-1)+f(x)=0无实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.三阶行列式$|\begin{array}{l}{1}&{-2}&{3}\\{2}&{0}&{-4}\\{-1}&{5}&{4}\end{array}|$中,元素4的代数余子式的值为4.

查看答案和解析>>

同步练习册答案