精英家教网 > 高中数学 > 题目详情
1.设a=-1,b=2log3m,那么“a=b”是“$m=\frac{{\sqrt{3}}}{3}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 根据充分条件和必要条件的定义进行判断即可.

解答 解:若a=b,则2log3m=-1,解得$m=\frac{{\sqrt{3}}}{3}$,
当$m=\frac{{\sqrt{3}}}{3}$时,b=2log3m=2log3$\frac{\sqrt{3}}{3}$=log3$\frac{1}{3}$=-1,此时a=b,
即“a=b”是“$m=\frac{{\sqrt{3}}}{3}$”的充要条件,
故选:C

点评 本题主要考查充分条件和必要条件的判断,根据对数的运算法则是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2
(1)求函数的最小正周期;
(2)计算f(0)+f(1)+f(2)+…+f(2015).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ln(x+1),g(x)=$\frac{ax}{x+1}$.
(1)若a=e,求函数h(x)=f(x)-g(x)的单调区间;
(2)若f(x)≥g(x)恒成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设变量x,yi满足约束条件$\left\{\begin{array}{l}{x-y+3≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,则z=x+2y的最大值为(  )
A.21B.15C.-3D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.把正整数排成如图(a)的三角形数阵,然后擦去第偶数行中的所有奇数,第奇数行中的所有偶数,可得如图(b)三角形数阵,现将图(b)中的正整数安小到大的顺序构成一个数列{an},若ak=2015,则k=1030.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A,B,C的对边分别是a,b,c,已知c=5,$B=\frac{2π}{3}$,△ABC的面积是$\frac{{15\sqrt{3}}}{4}$.
(Ⅰ)求b的值;
(Ⅱ)求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a>0,b>1且2a+b=4,则$\frac{1}{a}$+$\frac{2}{b-1}$的最小值为(  )
A.8B.4C.2$\sqrt{2}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设f(x)是定义域为R的奇函数,g(x)是定义域为R的偶函数,若函数f(x)+g(x)的值域为[1,3),则函数f(x)-g(x)的值域为(-3,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.画出下列函数图象,并标注关键点
(1)在同一平面直角坐标系内绘制f(x)=log2x,f(x)=lgx,f(x)=lnx,f(x)=x四个函数的函数图象;
(2)在同一平面直角坐标系内绘制f(x)=xcosx,f(x)=xsinx两个函数的函数图象.

查看答案和解析>>

同步练习册答案