精英家教网 > 高中数学 > 题目详情
13.已知公比为正数的等比数列{an}(n∈N*),首项a1=3,前n项和为Sn,且S3+a3、S5+a5、S4+a4成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{n{a_n}}}{6},求数列\left\{{b_n}\right\}的前n项和{T_n}$.

分析 (1)设公比为q>0,由等比数列的通项公式和等差数列中项的性质,解方程可得q,即可得到所求通项公式;
(2)求得bn=$\frac{n{a}_{n}}{6}$=n•($\frac{1}{2}$)n,运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理即可得到所求和.

解答 解:(1)依题意公比为正数的等比数列{an}(n∈N*),首项a1=3,
设an=3qn-1
因为S3+a3、S5+a5、S4+a4成等差数列,
所以2(S5+a5)=S3+a3+S4+a4
即2(a1+a2+a3+a4+2a5)=(a1+a2+2a3+(a1+a2+a3+2a4),
化简得4a5=a3
从而4q2=1,解得q=±$\frac{1}{2}$,
因为{an}(n∈N*)公比为正数,
所以q=$\frac{1}{2}$,an=6×($\frac{1}{2}$)n,n∈N*;          
(2)bn=$\frac{n{a}_{n}}{6}$=n•($\frac{1}{2}$)n
则Tn=1•($\frac{1}{2}$)+2•($\frac{1}{2}$)2+3•($\frac{1}{2}$)3+…+(n-1)•($\frac{1}{2}$)n-1+n•($\frac{1}{2}$)n
$\frac{1}{2}$Tn=1•($\frac{1}{2}$)2+2•($\frac{1}{2}$)3+3•($\frac{1}{2}$)4+…+(n-1)•($\frac{1}{2}$)n+n•($\frac{1}{2}$)n+1
两式相减可得$\frac{1}{2}$Tn=$\frac{1}{2}$+($\frac{1}{2}$)2+($\frac{1}{2}$)3+($\frac{1}{2}$)4+…+($\frac{1}{2}$)n-n•($\frac{1}{2}$)n+1
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n+1
化简可得Tn=2-(n+2)•($\frac{1}{2}$)n

点评 本题考查等比数列的通项公式和求和公式的运用,等差数列中项的性质,考查数列的求和方法:错位相减法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.以下茎叶图记录了甲、乙两个篮球队在3次不同比赛中的得分情况.乙队记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以m表示.那么在3次比赛中,乙队平均得分超过甲队平均得分的概率是(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{7}{10}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若圆的方程为$\left\{\begin{array}{l}{x=-1+2cosθ}\\{y=3-2sinθ}\end{array}\right.$(θ为参数),直线的方程为$\left\{\begin{array}{l}{x=2t-1}\\{y=6t-1}\end{array}\right.$ (t为参数),则直线与圆的位置关系是(  )
A.相交过圆心B.相交但不过圆心C.相切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}满足a1=3,an+1=2an,那么a4=(  )
A.24B.18C.16D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等比数列{bn}中,b3+b6=36,b4+b7=18,则b1=(  )
A.$\frac{1}{2}$B.44.5C.64D.128

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设F1,F2分别为双曲线:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径圆上,则双曲线的离心率为(  )
A.3B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow p=({2,-1}),\overrightarrow q=({x,2})$,且$\overrightarrow p⊥\overrightarrow q$,则$|{\overrightarrow p+λ\overrightarrow q}|({λ∈R})$的最小值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=2-4sinx-4cos2x的最大值和最小值,并写出函数取最值时对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线x-y=0与圆(x-2)2+y2=6相交于A,B两点,则弦AB的长为4.

查看答案和解析>>

同步练习册答案