精英家教网 > 高中数学 > 题目详情
2.函数y=$\sqrt{25-{x}^{2}}$-lgcosx的定义域为[-5,$-\frac{3π}{2}$)∪($-\frac{π}{2}$,$\frac{π}{2}$)∪($\frac{3π}{2}$,5].

分析 分别由根式内部的代数式大于等于0,对数式的真数大于0求解x的取值集合,取交集后得答案.

解答 解:要使原函数有意义,则$\left\{\begin{array}{l}{25-{x}^{2}≥0①}\\{cosx>0②}\end{array}\right.$,
解①得:-5≤x≤5.
解②得:$-\frac{π}{2}+2kπ<x<\frac{π}{2}+2kπ,k∈Z$.
∴-5$≤x<-\frac{3π}{2}$或$-\frac{π}{2}$<x<$\frac{π}{2}$或$\frac{3π}{2}<x≤5$.
∴函数y=$\sqrt{25-{x}^{2}}$-lgcosx的定义域为[-5,$-\frac{3π}{2}$)∪($-\frac{π}{2}$,$\frac{π}{2}$)∪($\frac{3π}{2}$,5].
故答案为:[-5,$-\frac{3π}{2}$)∪($-\frac{π}{2}$,$\frac{π}{2}$)∪($\frac{3π}{2}$,5].

点评 本题考查函数的定义域及其求法,考查了三角不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知f(x)=(x-1)2,g(x)=4(x-1),数列{an}满足a1=2,an≠1,(an+1-an)•g(an)+f(an)=0.
(1)求证:an+1=$\frac{3}{4}$an+$\frac{1}{4}$;
(2)求{an}的通项式;
(3)若bn=3f(an)-g(an+1),求{bn}的最大项和最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y-1≤0}\\{x-3y+2≥0}\\{x≥1}\end{array}\right.$.
(1)设z=2x+y,求z的取值范围;
(2)设m=x2+y2+2x,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.曲线y=-ex在点(0,-1)处的切线与坐标轴所围成的三角形的面积为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C的对边分别为a,b,c,已知b-c=2bcos(B+C)
(1)若a=2$\sqrt{6}$,b=3,求c;
(2)求证:A=2B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f[lg(x+1)]的定义域为[0,9],则函数f(x2)的定义域为[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.全集为R,集合A={3≤x≤7},B={x|2<x<10},求∁R(A∪B),∁R(A∩B),(∁RA)∩B,A∪(∁RB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.满足{1}⊆A?{1,2,3}的集合A的个数有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=x|x-a|-$\frac{1}{4}$,x∈R.
(1)a=1时,指出f(x)单调区间和奇偶性;
(2)a=1时,求y=f(2x)零点;
(3)对任何x∈[0,1],不等式f(x)<0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案