精英家教网 > 高中数学 > 题目详情
15.设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=1,A=2B,则cosB的值为$\frac{\sqrt{3}}{3}$.

分析 利用正弦定理,二倍角公式结合已知可得$\frac{a}{2sinBcosB}=\frac{3}{sinB}$,整理得a=6cosB,由余弦定理可解得a的值,可求cosB的值.

解答 解:∵A=2B,$\frac{a}{sinA}=\frac{b}{sinB}$,b=3,c=1,
∴可得:$\frac{a}{2sinBcosB}=\frac{3}{sinB}$,可得:a=6cosB,
∴由余弦定理可得:a=6×$\frac{{a}^{2}+1-9}{2a}$,
∴a=2$\sqrt{3}$,
∴cosB=$\frac{a}{6}$=$\frac{\sqrt{3}}{3}$.
故答案为:$\frac{\sqrt{3}}{3}$.

点评 本题主要考查了正弦定理,余弦定理,二倍角公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若△ABC的两个顶点B,C的坐标分别是(-1,0)和(2,0),而顶点A在直线y=x上移动,则△ABC的重心G的轨迹方程是3x-3y-1=0(y≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=ln(x+$\frac{4}{x}$-a),若对任意的m∈R,均存在x0>0使得f(x0)=m,则实数a的取值范围是(-∞,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设x,y满足约束条件$\left\{{\begin{array}{l}{1≤x+y≤3,\;\;}\\{-1≤x-y≤0}\end{array}}\right.$且z=2x-y+a(a为常数)的最大值为2,则实数a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是$\frac{2π}{3}$夹角为的单位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,则|$\overrightarrow{a}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足a1=1,$\frac{{a}_{n+1}}{n+1}$=$\frac{{a}_{n}}{n}$.数列a1,a2,a${\;}_{{b}_{1}}$,a${\;}_{{b}_{2}}$,a${\;}_{{b}_{3}}$,…,a${\;}_{{b}_{n}}$,…成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:ρ=4cosθ.
(1)把直线l的参数方程化为极坐标方程,把曲线C的极坐标方程化为普通方程;
(2)已知点P(1,0),直线l与曲线C交于M、N两点,求|PM|•|PN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知定义在R上的二次函数f(x)为偶函数,且满足f(1)=6,f(3)=2.
(1)求f(x)的解析式;
(2)若f(x)在区间[a,b]上值域为[2a,2b],试求所有符合题意的[a,b].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{2}$sin(ωx+φ)(ω>0,0<φ<π)为偶函数,点P,Q分别为函数y=f(x)图象上相邻的最高点和最低点,且|$\overrightarrow{PQ}$|=$\sqrt{2}$.
(1)求函数f(x)的解析式;
(2)在△ABC中,a,b,c分别为角A,B,C的对边,已知a=1,b=$\sqrt{2}$,f($\frac{A}{π}$)=$\frac{\sqrt{3}}{4}$,求角C的大小.

查看答案和解析>>

同步练习册答案