精英家教网 > 高中数学 > 题目详情
10.设向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是$\frac{2π}{3}$夹角为的单位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,则|$\overrightarrow{a}$|=$\sqrt{3}$.

分析 计算${\overrightarrow{a}}^{2}$,开方即可得出|$\overrightarrow{a}$|.

解答 解:${\overrightarrow{{e}_{1}}}^{2}={\overrightarrow{{e}_{2}}}^{2}=1$,$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}=cos\frac{2π}{3}=-\frac{1}{2}$.
${\overrightarrow{a}}^{2}={\overrightarrow{{e}_{1}}}^{2}+4\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+4{\overrightarrow{{e}_{2}}}^{2}$=3.
∴|$\overrightarrow{a}$|=$\sqrt{3}$.
故答案为$\sqrt{3}$.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知tanα=$\frac{1}{3}$,cosβ=$\frac{\sqrt{5}}{5}$,且0<α<$\frac{π}{2}$,$\frac{3π}{2}$<β<2π,则α+β=$\frac{7π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在柱坐标系中画出下列各点,并把它们化成空间直角坐标系;
A(4,$\frac{3π}{4}$,2);
B(6,$\frac{π}{3}$,-5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=2{cos^2}x+2\sqrt{3}sinxcosx-1$.
(1)求f(x)的周期.
(2)当$x∈[{0,\frac{π}{2}}]$时,求f(x)的最大值、最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知关于x的方程$|x|-2a{log_2}(|x|+2)+{a^2}=3$有唯一实数解,则实数a的值为(  )
A.-1B.1C.-1或3D.1或-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=1,A=2B,则cosB的值为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数$f(x)=\left\{\begin{array}{l}cos\frac{π}{2}x,0≤x≤4\\-x+5,x>4\end{array}\right.$,若实数a、b、c互不相等,且满足f(a)=f(b)=f(c),则a+b+c的取值范围是(8,10).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,输出P的值为(  )
A.-1B.1C.0D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.有下列三个结论:
①命题“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”;
②“a=1”是“直线x-ay+1=0与直线x+ay-2=0互相垂直”的充要条件;
③若随机变量ξ服从正态分布N(1,σ2),且P(ξ<2)=0.8,则P(0<ξ<1)=0.2;
其中正确结论的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案