精英家教网 > 高中数学 > 题目详情
10.系统内有2k-1(k∈N*)个元件,每个元件正常工作的概率为p(0<p<1),若有超过一半的元件正常工作,则系统正常工作,求系统正常工作的概率pk,并讨论pk的单调性.

分析 由题意,pk=$\sum_{n=0}^{k-1}$C2k-1n(1-p)np2k-1-n,利用C2k+1n=C2k-1n+2C2k-1n-1+C2k-1n-2,可得pk+1=pk+C2k-1k(1-p)kpk(2p-1),即可得出结论.

解答 解:由题意,pk=$\sum_{n=0}^{k-1}$C2k-1n(1-p)np2k-1-n
∵C2k+1n=C2k-1n+2C2k-1n-1+C2k-1n-2
∴pk+1=$\sum_{n=0}^{k}$C2k+1n(1-p)np2k+1-n
=$\sum_{n=0}^{k}$(C2k-1n+2C2k-1n-1+C2k-1n-2)(1-p)np2k+1-n
=$\sum_{n=0}^{k-1}$C2k-1n(1-p)np2k-1-n+C2k-1k(1-p)kpk[p-(1-p)]
=pk+C2k-1k(1-p)kpk(2p-1)
∴p>$\frac{1}{2}$,pk递增,p<$\frac{1}{2}$,pk递减,p=$\frac{1}{2}$,pk不变.

点评 本题考查概率的运用,考查学生的计算能力,确定pk+1=pk+C2k-1k(1-p)kpk(2p-1)是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2c,离心率为e,左焦点为F,点M($\sqrt{2}$c,$\sqrt{2}$ce)在椭圆C上,O是坐标原点.
(Ⅰ)求e的大小;
(Ⅱ)若C上存在点N满足|FN|等于C的长轴长的$\frac{3}{4}$,求直线ON的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知(1+ax)(1+x)2的展开式中x2的系数为5,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若在△ABC的内角A,B,C的对边分别为a,b,c,满足acosB=bcosC=ccosA,求证:△ABC为正三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,△ABC所在平面上的点Pn(n∈N*)均满足△PnAB与△PnAC的面积比为3:1,$\overrightarrow{{P_n}A}$=$\frac{{{x_{n+1}}}}{3}$$\overrightarrow{{P_n}B}$-(2xn+1)$\overrightarrow{{P_n}C}$(其中,{xn}是首项为1的正项数列),则x4等于(  )
A.15B.17C.33D.31

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a<b<0,则下列选项正确的是(  )
A.$\frac{b}{a}<\frac{a}{b}$B.$\frac{1}{a}<\frac{1}{b}$C.an<bn(n∈N,n≥2)D.?c≠0,都有ac<bc

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知圆C:(x-2)2+y2=4.过点$M(1,\sqrt{2})$的直线与圆C交于A,B两点,若$\overrightarrow{CN}=\frac{1}{2}\overrightarrow{CA}+\frac{1}{2}\overrightarrow{CB}$,则当劣弧AB所对的圆心角最小时,$\overrightarrow{CN}•\overrightarrow{CM}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.作一个平面M,使得四面体四个顶点到该平面的距离之比为2:1:1:1,则这样的平面M共能作出(  )个.
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点O(0,0),A(0,3),直线l:y=x+1,设圆C的半径为1,圆心在l上,若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标a的取值范围为-1-$\frac{\sqrt{14}}{2}$≤a≤-1+$\frac{\sqrt{14}}{2}$.

查看答案和解析>>

同步练习册答案