精英家教网 > 高中数学 > 题目详情
15.若a<b<0,则下列选项正确的是(  )
A.$\frac{b}{a}<\frac{a}{b}$B.$\frac{1}{a}<\frac{1}{b}$C.an<bn(n∈N,n≥2)D.?c≠0,都有ac<bc

分析 A.由a<b<0,可得a2>b2,ab>0,利用不等式的基本性质,即可判断出正误;
B.由a<b<0,可得ab>0,利用不等式的基本性质,即可判断出正误;
C.由a<b<0,可得a2>b2,即可判断出正误;
D.取c<0时,可得ac>bc,即可判断出正误.

解答 解:A.∵a<b<0,∴a2>b2,ab>0,∴$\frac{b}{a}<\frac{a}{b}$,因此正确;
B.∵a<b<0,∴ab>0,∴$\frac{1}{b}<\frac{1}{a}$,因此不正确;
C.∵a<b<0,∴a2>b2,因此不正确;
D.取c<0时,可得ac>bc,因此不正确.
故选:A.

点评 本题考查了不等式的基本性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.用数学归纳法证明:
(1)首项是a1,公差是d的等差数列的通项公式an=a1+(n-1)d,前n项和的公式Sn=na1+$\frac{n(n-1)}{2}$d;
(2)首项是a1,公比是q的等比数列的通项公式是an=a1qn-1,前n项和的公式是Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$(q≠1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(Ⅰ)求证:不等式lnx≤k$\sqrt{x-1}$对k≥1恒成立.
(Ⅱ)设数列{an}的通项公式为an=$\sqrt{\frac{2}{2n-1}}$,前n项和为Sn,求证:Sn≥ln(2n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设集合A={(x,y)|x+a2y+6=0},B={(x,y)|(a-2)x+3ay+2a=0},若A∩B=∅,则实数a的值为0或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.系统内有2k-1(k∈N*)个元件,每个元件正常工作的概率为p(0<p<1),若有超过一半的元件正常工作,则系统正常工作,求系统正常工作的概率pk,并讨论pk的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知A,B是y=sin(ωx+φ)的图象与x轴的两个相邻交点,A,B之间的最值点为C.若△ABC为等腰直角三角形,则ω的值为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队,则高三学生队中5班和16班的人数分别为(  )
A.3,5B.4,5C.3,4D.4,3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项的和为Sn,且$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$=$\frac{n}{n+1}$(n∈N*).
(1)求S1,S2及Sn
(2)设bn=($\frac{1}{2}$)${\;}^{{a}_{n}}$,数列{bn}的前n项和为Tn,若对一切n∈N*均有Tn∈($\frac{1}{m}$,m2-6m+$\frac{16}{3}$),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x|x-a|-2.
(Ⅰ)当a=2时,求函数f(x)在[0,3]上的最大值和最小值;
(Ⅱ)若对任意x∈[0,1]恒有f(x)<0,求实数a的取值范围;
(Ⅲ)f(x)是否存在三个零点,若存在,求实数a的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案